This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080194 #34 Sep 18 2024 06:07:49 %S A080194 7,14,21,28,35,42,49,56,63,70,84,98,105,112,126,140,147,168,175,189, %T A080194 196,210,224,245,252,280,294,315,336,343,350,378,392,420,441,448,490, %U A080194 504,525,560,567,588,630,672,686,700,735,756,784,840,875,882,896,945,980 %N A080194 7-smooth numbers which are not 5-smooth. %C A080194 Numbers of the form 7*2^r*3^s*5^t*7^u with r, s, t, u >= 0. %C A080194 Multiples of 7 which are members of A002473. Or multiples of 7 with the largest prime divisor < 10. %C A080194 Numbers whose greatest prime factor (A006530) is 7. - _M. F. Hasler_, Nov 21 2018 %H A080194 David A. Corneth, <a href="/A080194/b080194.txt">Table of n, a(n) for n = 1..10000</a> %F A080194 a(n) = 7 * A002473(n). - _David A. Corneth_, Nov 22 2018 %F A080194 Sum_{n>=1} 1/a(n) = 5/8. - _Amiram Eldar_, Nov 10 2020 %e A080194 28 = 2^2*7 is a term but 30 = 2*3*5 is not. %t A080194 Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* _Giovanni Resta_, Nov 22 2018 *) %o A080194 (PARI) A080194_list(M)={my(L=List(),a,b,c); for(r=1,logint(M\1,7), a=7^r; for(s=0, logint(M\a,3), b=a*3^s; for(t=0,logint(M\b,5), c=b*5^t; for(u=0,logint(M\c,2), listput(L,c<<u))))); Set(L)} \\ Could be replaced by smooth(primes(4),M) from A051037. - Edited by _M. F. Hasler_, Nov 22 2018 %o A080194 (PARI) select( is_A080194(n)={n>1 && vecmax(factor(n,7)[,1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - _M. F. Hasler_, Nov 21 2018 %o A080194 (Python) %o A080194 from sympy import integer_log %o A080194 def A080194(n): %o A080194 def bisection(f,kmin=0,kmax=1): %o A080194 while f(kmax) > kmax: kmax <<= 1 %o A080194 while kmax-kmin > 1: %o A080194 kmid = kmax+kmin>>1 %o A080194 if f(kmid) <= kmid: %o A080194 kmax = kmid %o A080194 else: %o A080194 kmin = kmid %o A080194 return kmax %o A080194 def f(x): %o A080194 c = n+x %o A080194 for i in range(integer_log(x,7)[0]+1): %o A080194 for j in range(integer_log(m:=x//7**i,5)[0]+1): %o A080194 for k in range(integer_log(r:=m//5**j,3)[0]+1): %o A080194 c -= (r//3**k).bit_length() %o A080194 return c %o A080194 return bisection(f,n,n)*7 # _Chai Wah Wu_, Sep 17 2024 %o A080194 (Python) # faster for initial segment of sequence %o A080194 import heapq %o A080194 from itertools import islice %o A080194 from sympy import primerange %o A080194 def A080194gen(p=7): # generator of terms %o A080194 v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1)) %o A080194 while True: %o A080194 v = heapq.heappop(h) %o A080194 if v != oldv: %o A080194 yield 7*v %o A080194 oldv = v %o A080194 for p in psmooth_primes: %o A080194 heapq.heappush(h, v*p) %o A080194 print(list(islice(A080194gen(), 65))) # _Michael S. Branicky_, Sep 17 2024 %Y A080194 Cf. A002473, A051037. %Y A080194 Cf. A085125, A085126, A085127, A085128, A085129, A085131, A085132. %K A080194 easy,nonn %O A080194 1,1 %A A080194 _Klaus Brockhaus_, Feb 10 2003