This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080195 #19 Oct 23 2024 00:42:14 %S A080195 11,22,33,44,55,66,77,88,99,110,121,132,154,165,176,198,220,231,242, %T A080195 264,275,297,308,330,352,363,385,396,440,462,484,495,528,539,550,594, %U A080195 605,616,660,693,704,726,770,792,825,847,880,891,924,968,990,1056,1078,1089 %N A080195 11-smooth numbers which are not 7-smooth. %C A080195 Numbers of the form 2^r*3^s*5^t*7^u*11^v with r, s, t, u >= 0, v > 0. %H A080195 Robert Israel, <a href="/A080195/b080195.txt">Table of n, a(n) for n = 1..10000</a> %F A080195 a(n) = 11 * A051038(n). - _David A. Corneth_, May 27 2017 %F A080195 Sum_{n>=1} 1/a(n) = 7/16. - _Amiram Eldar_, Nov 10 2020 %e A080195 33 = 3*11 is a term but 35 = 5*7 is not. %p A080195 N:= 10^6; # to get all terms <= N %p A080195 A:= NULL; %p A080195 for v from 1 to floor(log[11](N)) do %p A080195 V:= 11^v; %p A080195 for u from 0 to floor(log[7](N/V)) do %p A080195 U:= 7^u*V; %p A080195 for t from 0 to floor(log[5](N/U)) do %p A080195 T:= 5^t*U; %p A080195 for s from 0 to floor(log[3](N/T)) do %p A080195 S:= 3^s*T; %p A080195 for r from 0 to floor(log[2](N/S)) do %p A080195 A:= A, 2^r*S %p A080195 od %p A080195 od %p A080195 od %p A080195 od %p A080195 od: %p A080195 {A}; # _Robert Israel_, May 28 2014 %t A080195 Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* _Amiram Eldar_, Nov 10 2020 *) %o A080195 (PARI) {m=1100; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=1,floor(log(m/d)/log(11)), z=concat(z,d*11^v)))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))} %o A080195 (Python) %o A080195 from sympy import integer_log, prevprime %o A080195 def A080195(n): %o A080195 def bisection(f,kmin=0,kmax=1): %o A080195 while f(kmax) > kmax: kmax <<= 1 %o A080195 while kmax-kmin > 1: %o A080195 kmid = kmax+kmin>>1 %o A080195 if f(kmid) <= kmid: %o A080195 kmax = kmid %o A080195 else: %o A080195 kmin = kmid %o A080195 return kmax %o A080195 def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) %o A080195 def f(x): return n+x-g(x,11) %o A080195 return 11*bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024 %Y A080195 Cf. A051038, A002473. %K A080195 easy,nonn %O A080195 1,1 %A A080195 _Klaus Brockhaus_, Feb 10 2003