This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080196 #13 Oct 23 2024 00:42:24 %S A080196 13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,234,260,273, %T A080196 286,312,325,338,351,364,390,416,429,455,468,507,520,546,572,585,624, %U A080196 637,650,676,702,715,728,780,819,832,845,858,910,936,975,1001,1014,1040 %N A080196 13-smooth numbers which are not 11-smooth. %C A080196 Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v >= 0, w > 0. %H A080196 Amiram Eldar, <a href="/A080196/b080196.txt">Table of n, a(n) for n = 1..10000</a> %F A080196 From _Amiram Eldar_, Nov 10 2020: (Start) %F A080196 a(n) = 13 * A080197(n). %F A080196 Sum_{n>=1} 1/a(n) = 77/192. (End) %e A080196 78 = 2*3*13 is a term but 77 = 7*11 is not. %t A080196 Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* _Amiram Eldar_, Nov 10 2020 *) %o A080196 (PARI) {m=1040; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=0,floor(log(m/d)/log(11)), e=d*11^v; for(w=1,floor(log(m/e)/log(13)),z=concat(z,e*13^w))))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))} %o A080196 (Python) %o A080196 from sympy import integer_log, prevprime %o A080196 def A080196(n): %o A080196 def bisection(f,kmin=0,kmax=1): %o A080196 while f(kmax) > kmax: kmax <<= 1 %o A080196 while kmax-kmin > 1: %o A080196 kmid = kmax+kmin>>1 %o A080196 if f(kmid) <= kmid: %o A080196 kmax = kmid %o A080196 else: %o A080196 kmin = kmid %o A080196 return kmax %o A080196 def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) %o A080196 def f(x): return n+x-g(x,13) %o A080196 return 13*bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024 %Y A080196 Cf. A080197, A051038. %K A080196 easy,nonn %O A080196 1,1 %A A080196 _Klaus Brockhaus_, Feb 10 2003