This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080224 #21 Feb 16 2025 08:32:48 %S A080224 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,2,0,0,0,0,0,1,0,0,0,0, %T A080224 0,3,0,0,0,2,0,1,0,0,0,0,0,3,0,0,0,0,0,2,0,1,0,0,0,4,0,0,0,0,0,1,0,0, %U A080224 0,1,0,5,0,0,0,0,0,1,0,3,0,0,0,3,0,0,0,1,0,3,0,0,0,0,0,4,0,0,0,2,0,1,0,1,0 %N A080224 Number of abundant divisors of n. %C A080224 Number of divisors d of n with sigma(d)>2*d (sigma = A000203) %C A080224 a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - _Reinhard Zumkeller_, Dec 27 2003 %H A080224 R. Zumkeller, <a href="/A080224/b080224.txt">Table of n, a(n) for n = 1..10000</a> %H A080224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AbundantNumber.html">Abundant Number.</a> %F A080224 a(n) + A080225(n) + A080226(n) = A000005(n). %F A080224 From _Antti Karttunen_, Nov 14 2017: (Start) %F A080224 a(n) = Sum_{d|n} A294937(d). %F A080224 a(n) = A294929(n) + A294937(n). %F A080224 a(n) = 1 iff A294930(n) = 1. %F A080224 (End) %e A080224 Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2. %p A080224 A080224 := proc(n) %p A080224 a := 0 ; %p A080224 for d in numtheory[divisors](n) do %p A080224 if numtheory[sigma](d) > 2*d then %p A080224 a := a+1 ; %p A080224 end if; %p A080224 end do: %p A080224 a; %p A080224 end proc: %p A080224 seq(A080224(n),n=1..80) ; # _R. J. Mathar_, Feb 22 2021 %t A080224 Table[Count[Divisors[n],_?(DivisorSigma[1,#]>2#&)],{n,110}] (* _Harvey P. Dale_, Jun 14 2013 *) %o A080224 (PARI) a(n) = sumdiv(n, d, sigma(d)>2*d) \\ _Michel Marcus_, Mar 09 2013 %Y A080224 Cf. A000005, A000203, A005101, A080225, A080226, A187795, A294890, A294929, A294930, A294937. %Y A080224 Cf. also A294904. %K A080224 nonn %O A080224 1,24 %A A080224 _Reinhard Zumkeller_, Feb 07 2003