cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080233 Triangle T(n,k) obtained by taking differences of consecutive pairs of row elements of Pascal's triangle A007318.

This page as a plain text file.
%I A080233 #22 Mar 25 2025 11:59:42
%S A080233 1,1,0,1,1,-1,1,2,0,-2,1,3,2,-2,-3,1,4,5,0,-5,-4,1,5,9,5,-5,-9,-5,1,6,
%T A080233 14,14,0,-14,-14,-6,1,7,20,28,14,-14,-28,-20,-7,1,8,27,48,42,0,-42,
%U A080233 -48,-27,-8,1,9,35,75,90,42,-42,-90,-75,-35,-9
%N A080233 Triangle T(n,k) obtained by taking differences of consecutive pairs of row elements of Pascal's triangle A007318.
%C A080233 Row sums are 1,1,1,1,1,1 with g.f. 1/(1-x). Can also be obtained from triangle A080232 by taking sums of pairs of consecutive row elements.
%C A080233 Mirror image of triangle in A156644. - _Philippe Deléham_, Feb 14 2009
%F A080233 T(n, k) = if(k>n, 0, binomial(n, k)-binomial(n, k-1)).
%e A080233 Triangle begins as:
%e A080233   1;
%e A080233   1, 0;
%e A080233   1, 1, -1;
%e A080233   1, 2,  0, -2;
%e A080233   1, 3,  2, -2, -3;
%e A080233   1, 4,  5,  0, -5,  -4;
%e A080233   1, 5,  9,  5, -5,  -9,  -5;
%e A080233   1, 6, 14, 14,  0, -14, -14,  -6;
%e A080233   1, 7, 20, 28, 14, -14, -28, -20,  -7;
%e A080233   1, 8, 27, 48, 42,   0, -42, -48, -27,  -8;
%e A080233   1, 9, 35, 75, 90,  42, -42, -90, -75, -35, -9;
%e A080233   ...
%t A080233 Table[Binomial[n, k] - Binomial[n, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Nov 24 2016 *)
%o A080233 (PARI) {T(n, k) = if( n<0 || k>n, 0, binomial(n, k) - binomial(n, k-1))}; /* _Michael Somos_, Nov 25 2016 */
%Y A080233 Row sums give A000012.
%Y A080233 Cf. A007318, A080232.
%K A080233 easy,sign,tabl
%O A080233 0,8
%A A080233 _Paul Barry_, Feb 10 2003