This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080245 #15 Feb 28 2023 17:04:21 %S A080245 1,-2,1,6,-4,1,-22,16,-6,1,90,-68,30,-8,1,-394,304,-146,48,-10,1,1806, %T A080245 -1412,714,-264,70,-12,1,-8558,6752,-3534,1408,-430,96,-14,1,41586, %U A080245 -33028,17718,-7432,2490,-652,126,-16,1 %N A080245 Inverse of coordination sequence array A113413. %C A080245 Formal inverse of A035607 when written as lower triangular matrix 1 2 1 2 4 1 ... %H A080245 Huyile Liang, Yanni Pei, and Yi Wang, <a href="https://arxiv.org/abs/2302.11856">Analytic combinatorics of coordination numbers of cubic lattices</a>, arXiv:2302.11856 [math.CO], 2023. See p. 7. %F A080245 Essentially the same as the triangle T(n, k), for n>0 and k>0, given by [0, -2, -1, -2, -1, -2, -1, -2, ...] DELTA A000007. Triangle (unsigned) given by [0, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938. %F A080245 Riordan array ((sqrt(1+6x+x^2)-x-1)/(2x), (sqrt(1+6x+x^2)-x-1)/2). %e A080245 Rows are {1}, {-2, 1}, {6, -4, 1}, {-22, 16, -6, 1}, .... %e A080245 From _Paul Barry_, Apr 28 2009: (Start) %e A080245 Triangle begins %e A080245 1, %e A080245 -2, 1, %e A080245 6, -4, 1, %e A080245 -22, 16, -6, 1, %e A080245 90, -68, 30, -8, 1, %e A080245 -394, 304, -146, 48, -10, 1, %e A080245 1806, -1412, 714, -264, 70, -12, 1 %e A080245 Production matrix is %e A080245 -2, 1, %e A080245 2, -2, 1, %e A080245 -2, 2, -2, 1, %e A080245 2, -2, 2, -2, 1, %e A080245 -2, 2, -2, 2, -2, 1, %e A080245 2, -2, 2, -2, 2, -2, 1, %e A080245 -2, 2, -2, 2, -2, 2, -2, 1 (End) %Y A080245 Row sums are signed little Schroeder numbers A080243. Diagonal sums are given by A080244. %Y A080245 Cf. A035607, A080243, A080244, A006603, A001003. %Y A080245 Cf. A000007 A084938. %Y A080245 Essentially same triangle as A033877 but with rows read in reversed order. %K A080245 sign,tabl %O A080245 0,2 %A A080245 _Paul Barry_, Feb 13 2003