cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080335 Diagonal in square spiral or maze arrangement of natural numbers.

This page as a plain text file.
%I A080335 #47 Jan 31 2024 10:08:19
%S A080335 1,5,9,17,25,37,49,65,81,101,121,145,169,197,225,257,289,325,361,401,
%T A080335 441,485,529,577,625,677,729,785,841,901,961,1025,1089,1157,1225,1297,
%U A080335 1369,1445,1521,1601,1681,1765,1849,1937,2025,2117,2209,2305,2401,2501
%N A080335 Diagonal in square spiral or maze arrangement of natural numbers.
%C A080335 Interleaves the odd squares A016754 with (1+4n^2), A053755.
%C A080335 Squares of positive integers (plus 1 if n is odd). - _Wesley Ivan Hurt_, Oct 10 2013
%C A080335 a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - _Bob Selcoe_, Feb 12 2015
%C A080335 a(n) is also the edge chromatic number of the complement of the (n+2) X (n+2) rook graph. - _Eric W. Weisstein_, Jan 31 2024
%H A080335 Vincenzo Librandi, <a href="/A080335/b080335.txt">Table of n, a(n) for n = 0..10000</a>
%H A080335 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeChromaticNumber.html">Edge Chromatic Number</a>
%H A080335 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>
%H A080335 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>
%H A080335 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A080335 a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.
%F A080335 a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).
%F A080335 E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - _Paul Barry_, Sep 02 2003 and Sep 19 2003
%F A080335 a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - _Harvey P. Dale_, Jan 29 2012
%F A080335 a(n)+(-1)^n = A137928(n+1). - _Philippe Deléham_, Feb 17 2012
%F A080335 G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - _Colin Barker_, Mar 18 2012
%F A080335 a(n) = A000035(n) + A000290(n+1). - _Wesley Ivan Hurt_, Oct 10 2013
%F A080335 From _Bob Selcoe_, Feb 12 2015: (Start)
%F A080335 a(n) = A137932(n+2) + 1.
%F A080335 a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.
%F A080335 a(n) = A002378(n+2) - A047238(n+3) + 1.
%F A080335 (End)
%F A080335 Sum_{n>=0} 1/a(n) = Pi*coth(Pi/2)/4 + Pi^2/8 - 1/2. - _Amiram Eldar_, Jul 07 2022
%p A080335 A080335:=n->(n mod 2) + (n+1)^2; seq(A080335(k),k=0..49); # _Wesley Ivan Hurt_, Oct 10 2013
%t A080335 With[{nn = 60}, Riffle[Range[1, nn, 2]^2, 4 Range[nn]^2 + 1]] (* _Harvey P. Dale_, Jan 29 2012 *)
%t A080335 LinearRecurrence[{2, 0, -2, 1}, {1, 5, 9, 17}, 60] (* _Harvey P. Dale_, Jan 29 2012 *)
%t A080335 Table[(3 + 4 n + 2 n^2 - (-1)^n)/2, {n, 0, 50}] (* _Wesley Ivan Hurt_, Oct 10 2013 *)
%t A080335 Table[Mod[n, 2] + (n + 1)^2, {n, 0, 20}] (* _Eric W. Weisstein_, Jan 31 2024 *)
%o A080335 (Magma) [(3+4*n+2*n^2-(-1)^n)/2: n in [0..50]]; // _Vincenzo Librandi_, Sep 06 2011
%Y A080335 Cf. A081347, A081348.
%Y A080335 Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
%Y A080335 Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
%Y A080335 Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
%K A080335 nonn,easy
%O A080335 0,2
%A A080335 _Paul Barry_, Mar 19 2003