cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080364 Composite numbers whose least prime factor appears with multiplicity 1.

This page as a plain text file.
%I A080364 #22 Jan 09 2022 11:29:17
%S A080364 6,10,14,15,18,21,22,26,30,33,34,35,38,39,42,46,50,51,54,55,57,58,62,
%T A080364 65,66,69,70,74,75,77,78,82,85,86,87,90,91,93,94,95,98,102,105,106,
%U A080364 110,111,114,115,118,119,122,123,126,129,130,133,134,138,141,142,143,145,146
%N A080364 Composite numbers whose least prime factor appears with multiplicity 1.
%C A080364 Density is Sum_{p >= 2} 1/p * Product_{q <= p} (1 - 1/q) which is around 0.65. (In the sum and product, p and q are restricted to primes.) - _Charles R Greathouse IV_, Jan 09 2022
%H A080364 Harvey P. Dale, <a href="/A080364/b080364.txt">Table of n, a(n) for n = 1..1000</a>
%e A080364 50 = 2^1 * 5^2; least prime factor is 2, whose exponent is 1, so 50 is a term.
%t A080364 mi[x_] := Part[Flatten[FactorInteger[x]], 1] k=0; Do[s=mi[n]; If[Equal[GCD[s, n/s], 1]&&!PrimeQ[n], Print[n]], {n, 2, 256}]
%t A080364 Select[Range[150],CompositeQ[#]&&FactorInteger[#][[1,2]]==1&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jan 23 2021 *)
%o A080364 (PARI) is(n,f=factor(n))=n>1 && f[1,2]==1 \\ _Charles R Greathouse IV_, Jan 09 2022
%o A080364 (PARI) is(n)=forprime(p=2,97, if(n%p==0, return(n%p^2>0))); !ispower(n) && factor(n)[1,2]==1 \\ _Charles R Greathouse IV_, Jan 09 2022
%Y A080364 Cf. A034444, A056169, A020639, A080363.
%K A080364 nonn,easy
%O A080364 1,1
%A A080364 _Labos Elemer_, Feb 21 2003
%E A080364 Edited by _Jon E. Schoenfield_, Jul 10 2018