This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080376 #27 Jun 10 2024 08:52:14 %S A080376 2,4,9,24,30,34,99,189,217,282,367,738,3302,3427,3644,3793,4612,7970, %T A080376 8688,14357,23283,34202,49414,85633,85787,103520,224659,273413,415069, %U A080376 474029,685903,2386432,2398788,2959782,4875380,6169832,9330121,12768473,13879771,17681799 %N A080376 Numbers where A080374 increases. %C A080376 Numbers where a consecutive prime-difference (prime(a(n)+1)-prime(a(n))) arises with a new prime-power factor. %H A080376 Amiram Eldar, <a href="/A080376/b080376.txt">Table of n, a(n) for n = 1..64</a> (terms below 10^10) %e A080376 From _Michael De Vlieger_, May 12 2017: (Start) %e A080376 Values of A080374 starting at a(n). %e A080376 n a(n) A080374(a(n)) %e A080376 1 2 1 %e A080376 2 4 2 %e A080376 3 9 4 %e A080376 4 24 12 %e A080376 5 30 24 %e A080376 6 34 168 %e A080376 7 99 840 %e A080376 8 189 2520 %e A080376 9 217 27720 %e A080376 10 282 471240 %e A080376 11 367 942480 %e A080376 12 738 12252240 %e A080376 13 3302 24504480 %e A080376 14 3427 465585120 %e A080376 15 3644 2327925600 %e A080376 16 3793 72165693600 %e A080376 17 4612 216497080800 %e A080376 18 7970 6278415343200 %e A080376 19 8688 144403552893600 %e A080376 20 14357 288807105787200 %e A080376 21 23283 12418705548849600 %e A080376 22 34202 509166927502833600 %e A080376 23 49414 18839176317604843200 %e A080376 24 85633 131874234223233902400 %e A080376 25 85787 6989334413831396827200 %e A080376 ... %e A080376 (End) %t A080376 s=1; Do[s1=s; s=LCM[s, Prime[n+1]-Prime[n]]; If[Greater[s, s1], Print[n]], {n, 1, 100000}] %t A080376 (* Second program: *) %t A080376 Most[Accumulate@ #2 + 1] & @@ Transpose@ Map[{First@ #, Length@ #} &, Split@ FoldList[LCM @@ {#1, #2} &, Differences@ Array[Prime, 10^4]]] (* _Michael De Vlieger_, May 12 2017 *) %o A080376 (PARI) lista(pmax) = {my(k = 1, p1 = 2, lcmmax = 1, lcm1 = 1, d); forprime(p2 = 3, pmax, d = p2 - p1; lcm1 = lcm(lcm1, d); if(lcm1 > lcmmax, lcmmax = lcm1; print1(k, ", ")); p1 = p2; k++);} \\ _Amiram Eldar_, Jun 09 2024 %Y A080376 Cf. A001223, A080374. %K A080376 nonn %O A080376 1,1 %A A080376 _Labos Elemer_, Feb 27 2003 %E A080376 Edited by _N. J. A. Sloane_, May 13 2017 at the suggestion of _Michael De Vlieger_. %E A080376 More terms from _Amiram Eldar_, Jun 09 2024