This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080392 #22 Aug 04 2017 14:33:18 %S A080392 2,420,920,1122,1218,1892,1978,2444,2914,3198,3782,4028,4136,4292, %T A080392 4664,4958,4960,5330,5762,5986,6020,6032,6710,6834,6864,6882,6954, %U A080392 6956,6968,7106,7130,7140,7238,7254,7448,7616,8178,8190,8400,8692,9462,9506,10712,11060,11288 %N A080392 Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7. %C A080392 Numbers arising in A067348 and not present in A080385. %C A080392 Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - _Peter Luschny_, Aug 04 2017 %H A080392 David A. Corneth, <a href="/A080392/b080392.txt">Table of n, a(n) for n = 1..274</a> (Terms <= 60000) %e A080392 A080383(2) = 3; %e A080392 A080383(420) = 11; %e A080392 A080383(920) = 11; %e A080392 A080383(1122) = 9; %e A080392 A080383(1218) = 9. %p A080392 isa := proc(n) local bn, bm; %p A080392 if n mod 2 = 0 then bn := binomial(n, iquo(n,2)): %p A080392 if modp(bn, n) = 0 then %p A080392 bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0): %p A080392 return 1 <> add(bm(n, j), j=2..iquo(n,2)-1) %p A080392 fi fi; false end: %p A080392 select(isa, [$1..5000]); # _Peter Luschny_, Aug 04 2017 %t A080392 Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}] %t A080392 (* Second program: *) %t A080392 Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* _Michael De Vlieger_, Jul 30 2017 *) %Y A080392 Cf. A000984, A001405, A067348, A080383, A080385. %K A080392 nonn %O A080392 1,1 %A A080392 _Labos Elemer_, Mar 17 2003 %E A080392 More terms from _Michael De Vlieger_, Jul 30 2017