cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080406 Boustrophedon transform of the continued fraction of Pi (cf. A001203).

This page as a plain text file.
%I A080406 #13 Feb 17 2021 09:23:56
%S A080406 3,10,32,73,457,1994,6407,29489,148253,852592,5420543,37975111,
%T A080406 290066507,2400720769,21396506651,204322668174,2081209926313,
%U A080406 22523982873141,258105780607144,3121989826825492,39750408190737416
%N A080406 Boustrophedon transform of the continued fraction of Pi (cf. A001203).
%H A080406 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J.Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H A080406 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A080406 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F A080406 a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=136.651536367325329682973604897976758877614262731284965133228708820... - _Benoit Cloitre_ and Mark Hudson (mrmarkhudson(AT)hotmail.com)
%e A080406 We simply apply the Boustrophedon transform to [3,7,15,1,292,1,1,1,...]
%Y A080406 Cf. A001203, A000796.
%K A080406 nonn,easy
%O A080406 0,1
%A A080406 Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003