This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080426 #97 Apr 22 2025 03:49:10 %S A080426 1,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,3,1,1,3,3,3,1,1,3,3,3,1,1,3,1,1,3, %T A080426 1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,3,1,1,3,3,3,1,1, %U A080426 3,3,3,1,1,3,1,1,3,1,1,3,3,3,1,1,3,3,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,3,1,1 %N A080426 a(1)=1, a(2)=3; all terms are either 1 or 3; each run of 3's is followed by a run of two 1's; and a(n) is the length of the n-th run of 3's. %C A080426 It appears that the sequence can be calculated by any of the following three methods: (1) Start with 1 and repeatedly replace (simultaneously) all 1's with 1,3,1 and all 3's with 1,3,3,3,1. [Equivalently, trajectory of 1 under the morphism 1 -> 1,3,1; 3 -> 1,3,3,3,1. - _N. J. A. Sloane_, Nov 03 2019] (2) a(n)= A026490(2n). (3) Replace each 2 in A026465 (run lengths in Thue-Morse) with 3. %C A080426 Length of n-th run of 1's in the Feigenbaum sequence A035263 = 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, .... - _Philippe Deléham_, Apr 18 2004 %C A080426 Another construction. Let S_0 = 1, and let S_n be obtained by applying the morphism 1 -> 3, 3 -> 113 to S_{n-1}. The sequence is the concatenation S_0, S_1, S_2, ... - D. R. Hofstadter, Oct 23 2014 %C A080426 a(n+1) is the number of times n appears in A003160. - _John Keith_, Dec 31 2020 %H A080426 Reinhard Zumkeller, <a href="/A080426/b080426.txt">Table of n, a(n) for n = 1..10000</a> %H A080426 Jean-Paul Allouche, <a href="https://webusers.imj-prg.fr/~jean-paul.allouche/121-12221.pdf">On the morphism 1 -> 121, 2 -> 12221</a>, CNRS France, 2024. See pp. 5-6. %H A080426 Jean-Paul Allouche, <a href="/A026465/a026465.pdf">On the morphism 1 -> 121, 2 -> 12221</a>, Preprint, 2024 [Local copy, with permission] %H A080426 D. R. Hofstadter, <a href="/A075326/a075326_1.pdf">Anti-Fibonacci numbers</a>, Oct 23 2014. %F A080426 a(1) = 1; for n>1, a(n) = A003156(n) - A003156(n-1). - _Philippe Deléham_, Apr 16 2004 %t A080426 Position[ Nest[ Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 8], 0] // Flatten // Differences // Prepend[#, 1]& (* _Jean-François Alcover_, Mar 14 2014, after _Philippe Deléham_ *) %t A080426 nsteps=7;Flatten[SubstitutionSystem[{1->{3},3->{1,1,3}},{1},nsteps]] (* _Paolo Xausa_, Aug 12 2022, using D. R. Hofstadter's construction *) %o A080426 (Haskell) -- following Deléham %o A080426 import Data.List (group) %o A080426 a080426 n = a080426_list !! n %o A080426 a080426_list = map length $ filter ((== 1) . head) $ group a035263_list %o A080426 -- _Reinhard Zumkeller_, Oct 27 2014 %o A080426 (PARI) %o A080426 A080426(nmax) = my(a=[1], s=[[1, 3, 1], [], [1, 3, 3, 3, 1]]); while(length(a)<nmax, a=concat(vecextract(s,a))); a[1..nmax]; %o A080426 A080426(100) \\ _Paolo Xausa_, Sep 14 2022, using method (1) from comments %o A080426 (Python) %o A080426 def A080426(nmax): %o A080426 a, s = "1", "".maketrans({"1":"131", "3":"13331"}) %o A080426 while len(a) < nmax: a = a.translate(s) %o A080426 return list(map(int, a[:nmax])) %o A080426 print(A080426(100)) # _Paolo Xausa_, Aug 30 2022, using method (1) from comments %o A080426 (Python) %o A080426 def A080426(n): %o A080426 def bisection(f,kmin=0,kmax=1): %o A080426 while f(kmax) > kmax: kmax <<= 1 %o A080426 kmin = kmax >> 1 %o A080426 while kmax-kmin > 1: %o A080426 kmid = kmax+kmin>>1 %o A080426 if f(kmid) <= kmid: %o A080426 kmax = kmid %o A080426 else: %o A080426 kmin = kmid %o A080426 return kmax %o A080426 def f(x): %o A080426 c, s = x, bin(x)[2:] %o A080426 l = len(s) %o A080426 for i in range(l&1,l,2): %o A080426 c -= int(s[i])+int('0'+s[:i],2) %o A080426 return c %o A080426 return bisection(lambda x:f(x)+n,n,n)-bisection(lambda x:f(x)+n-1,n-1,n-1)-1 # _Chai Wah Wu_, Jan 29 2025 %Y A080426 Cf. A026465, A026490, A035263, A003156, A328979, A003160. %Y A080426 Arises in the analysis of A075326, A249031 and A249032. %K A080426 nonn %O A080426 1,2 %A A080426 _John W. Layman_, Feb 18 2003