A080439
a(1) = 11, a(n) is the smallest prime obtained by inserting digits between every pair of digits of a(n-1).
Original entry on oeis.org
11, 101, 10061, 100000651, 10000000000060571, 100000000000000000000000600052761, 10000000000000000000000000000000000000000000000060000000502271641
Offset: 1
a(2) = 101 and a(3) is obtained by inserting a '0' and a '6' in the two inner spaces of 101: (1,-,0,-,1).
-
a[n_] := Block[{d = IntegerDigits[n]}, k = Length[d]; While[k > 1, d = Insert[d, 0, k]; k-- ]; d = FromDigits[d]; e = d; k = 0; While[ !PrimeQ[e], k++; e = d + 10FromDigits[ IntegerDigits[k], 100]]; e]; NestList[a, 11, 6]
A080441
a(1) = 17, a(n) is the smallest prime obtained by inserting digits between every pair of digits of a(n-1).
Original entry on oeis.org
17, 107, 10007, 100000007, 10000000000003037, 100000000000000000000000003000307, 10000000000000000000000000000000000000000000000000003000000030057
Offset: 1
-
a[n_] := Block[{d = IntegerDigits[n]}, k = Length[d]; While[k > 1, d = Insert[d, 0, k]; k-- ]; d = FromDigits[d]; e = d; k = 0; While[ !PrimeQ[e], k++; e = d + 10FromDigits[ IntegerDigits[k], 100]]; e]; NestList[a, 17, 6]
A080442
a(1) = 19, a(n) is the smallest prime obtained by inserting digits between every pair of digits of a(n-1).
Original entry on oeis.org
19, 109, 10009, 100000039, 10000000000002359, 100000000000000000000000002031519, 10000000000000000000000000000000000000000000000000002000301050179
Offset: 1
-
a[n_] := Block[{d = IntegerDigits[n]}, k = Length[d]; While[k > 1, d = Insert[d, 0, k]; k-- ]; d = FromDigits[d]; e = d; k = 0; While[ !PrimeQ[e], k++; e = d + 10FromDigits[ IntegerDigits[k], 100]]; e]; NestList[a, 19, 6]
Showing 1-3 of 3 results.
Comments