A080576 Triangle in which n-th row lists all partitions of n, in graded reflected lexicographic order.
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 3, 1, 2, 3, 3, 3, 1, 1, 4, 2, 4, 1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2
Offset: 1
Examples
First five rows are: [[1]] [[1, 1], [2]] [[1, 1, 1], [1, 2], [3]] [[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]] [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5]] From _Gus Wiseman_, May 20 2020: (Start) The sequence of all reversed partitions begins: () (122) (15) (25) (1) (113) (6) (16) (11) (23) (1111111) (7) (2) (14) (111112) (11111111) (111) (5) (11122) (1111112) (12) (111111) (1222) (111122) (3) (11112) (11113) (11222) (1111) (1122) (1123) (2222) (112) (222) (223) (111113) (22) (1113) (133) (11123) (13) (123) (1114) (1223) (4) (33) (124) (1133) (11111) (114) (34) (233) (1112) (24) (115) (11114) (End)
Links
- Alois P. Heinz, Rows n = 1..20, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. (uses Flash)
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for the graded colexicographic ordering.
See A193073 for the graded lexicographic ordering. - M. F. Hasler, Jul 16 2011
See A228100 for the Fenner-Loizou (binary tree) ordering.
Row n has A000041(n) partitions.
Taking colexicographic instead of lexicographic gives A026791.
Lengths of these partitions appear to be A049085.
Reversing all partitions gives A193073 (the non-reflected version).
The version for reversed (weakly increasing) partitions is A211992.
The generalization to compositions is A228525.
The Heinz numbers of these partitions are A334434.
Programs
-
Maple
with(combinat); partition(6);
-
Mathematica
row[n_] := Flatten[Reverse /@ Reverse[SplitBy[Reverse /@ IntegerPartitions[n], Length]], 1]; Array[row, 7] // Flatten (* Jean-François Alcover, Dec 05 2016 *) lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Reverse/@Join@@Table[Sort[IntegerPartitions[n],lexsort],{n,0,8}] (* Gus Wiseman, May 20 2020 *)
Extensions
Edited by Daniel Forgues, Jan 21 2011
Comments