A080588 a(n) is the smallest nonnegative integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = 4n.
0, 2, 4, 5, 8, 12, 13, 14, 16, 17, 18, 19, 20, 24, 28, 29, 32, 36, 40, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 84, 88, 92, 96, 100, 104, 108, 112, 113, 114, 115, 116, 120, 124, 125
Offset: 0
Links
- Mathieu Gouttenoire, Table of n, a(n) for n = 0..100000
- J.-P. Allouche, N. Rampersad, and Jeffrey Shallit, On integer sequences whose first iterates are linear, Aequationes Math. 69 (2005), 114-127.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Index entries for sequences of the a(a(n)) = 2n family.
Formula
a(a(n)) = 4n. a(2^k) = 2^(k+1).
a(n) = A080591(n-1) + 1, n >= 1.
Comments