This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080603 #21 Jun 09 2024 13:20:12 %S A080603 13,17,23,29,31,37,43,47,53,59,67,71,73,79,83,97,101,103,107,109,113, %T A080603 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211, %U A080603 223,229,233,239,241,263,269,271,283,293,307,311,313,317,331,337,347,353,359,367 %N A080603 Primes such that deleting some digit yields a prime. %C A080603 Leading zeros are allowed in the number that appears after the digit is deleted, as in A080608. - _Michael S. Branicky_, Jan 28 2023 %H A080603 Michael S. Branicky, <a href="/A080603/b080603.txt">Table of n, a(n) for n = 1..10000</a> %t A080603 Q@n_:=AnyTrue[FromDigits@Delete[IntegerDigits@n,#]&/@Range@IntegerLength@n, PrimeQ]; Select[Prime@Range@500, Q@# &] (* _Hans Rudolf Widmer_, Jun 09 2024 *) %o A080603 (Python) %o A080603 from sympy import isprime %o A080603 def ok(n): %o A080603 if n < 10 or not isprime(n): return False %o A080603 s = str(n) %o A080603 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A080603 return any(isprime(int(t)) for t in si) %o A080603 print([k for k in range(368) if ok(k)]) # _Michael S. Branicky_, Jan 28 2023 %Y A080603 Cf. A080608, A096235-A096246. %K A080603 nonn,easy,base %O A080603 1,1 %A A080603 _David W. Wilson_, Feb 25 2003