A080656 Order of group of n X n X n Rubik cube, under assumptions not-s, m, not-i.
1, 3674160, 43252003274489856000, 707195371192426622240452051915172831683411968000000000, 2582636272886959379162819698174683585918088940054237132144778804568925405184000000000000000
Offset: 1
Keywords
References
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
Links
- Alan Bawden, Cube Lovers Archive, Part 6
Crossrefs
Programs
-
Maple
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; F := 0; G := 0; else A := n/2; B := 1; C := 0; D := 0; E := n*(n-2)/4; F := 1; G := 0; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
Mathematica
f[1]=1;f[2]=7!3^6;f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24!(24!/2)^(n-3); Array[f,5] (* Herbert Kociemba, Dec 08 2016 *) f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/2)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
Formula
a(1)=1; a(2)=7!*3^6; a(3)=8!*3^7*12!*2^10; a(n)=a(n-2)*24!*(24!/2)^(n-3). - Herbert Kociemba, Dec 08 2016
Comments