A080662 Order of group of n X n X n Rubik cube, under assumptions s, not-m, i.
1, 3674160, 88580102706155225088000, 326318176648849198250599213408124182588293120000000000, 25658098810418462614156980952771358874191154069919957663814291417013979423841452032000000000000000000
Offset: 1
Keywords
References
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
Links
- Alan Bawden, Cube Lovers Archive, Part 6
Programs
-
Maple
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := (n-1)/2; C := (n-1)/2; D := (n-1)/2; E := (n+4)*(n-1)*(n-3)/24; G := (n^2-1)*(n-3)/24; else A := n/2; F := 1; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; G := n*(n-1)*(n-2)/24; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
Comments