This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080688 #19 Jul 12 2024 21:54:24 %S A080688 1,2,3,4,5,7,6,11,13,8,10,17,9,19,14,23,29,12,15,22,31,37,26,41,21,43, %T A080688 16,20,25,34,47,53,18,33,38,59,61,28,35,46,67,39,71,58,73,79,24,30,44, %U A080688 51,55,62,83,49,89,74,97,27,57,101,52,65,82 %N A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n. %C A080688 The number 12 can be written as 3*2*2, 4*3, 6*2 and 12 corresponding to each of the four values (12,15,22,31) in the example. Note that A001055(12) = 4. Since A001055(n) depends only on the least prime signature, the values 1,2,4,6,8,12,16,24,30,32,36,... A025487 are of special interest when counting multisets. (see for example, A035310 and A035341). %C A080688 A064553(T(n,k)) = A080444(n,k) = n for k=1..A001055(n); T(n,1) = A064554(n); T(n,A001055(n)) = A064554(n). - _Reinhard Zumkeller_, Oct 01 2012 %C A080688 Row n is the sorted list of shifted Heinz numbers of factorizations of n into factors > 1, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - _Gus Wiseman_, Sep 05 2018 %H A080688 Reinhard Zumkeller, <a href="/A080688/b080688.txt">Rows n = 1..1000 of triangle, flattened</a> %e A080688 a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36) %e A080688 From _Gus Wiseman_, Sep 05 2018: (Start) %e A080688 Triangle begins: %e A080688 1 %e A080688 2 %e A080688 3 %e A080688 4 5 %e A080688 7 %e A080688 6 11 %e A080688 13 %e A080688 8 10 17 %e A080688 9 19 %e A080688 14 23 %e A080688 29 %e A080688 12 15 22 31 %e A080688 37 %e A080688 26 41 %e A080688 21 43 %e A080688 16 20 25 34 47 %e A080688 Corresponding triangle of factorizations begins: %e A080688 (), %e A080688 (2), %e A080688 (3), %e A080688 (2*2), (4), %e A080688 (5), %e A080688 (2*3), (6), %e A080688 (7), %e A080688 (2*2*2), (2*4), (8), %e A080688 (3*3), (9), %e A080688 (2*5), (10), %e A080688 (11), %e A080688 (2*2*3), (3*4), (2*6), (12). %e A080688 (End) %t A080688 facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; %t A080688 Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* _Gus Wiseman_, Sep 05 2018 *) %o A080688 (Haskell) %o A080688 a080688 n k = a080688_row n !! (k-1) %o A080688 a080688_row n = map (+ 1) $ take (a001055 n) $ %o A080688 elemIndices n $ map fromInteger a064553_list %o A080688 a080688_tabl = map a080688_row [1..] %o A080688 a080688_list = concat a080688_tabl %o A080688 -- _Reinhard Zumkeller_, Oct 01 2012 %Y A080688 Cf. A001055, A025487, A035310, A035341, A064553, A080444. %Y A080688 Cf. A007716, A056239, A162247, A215366, A275024, A317144, A317145, A318871. %K A080688 easy,nonn,tabf %O A080688 1,2 %A A080688 _Alford Arnold_, Mar 23 2003 %E A080688 More terms from _Sean A. Irvine_, Oct 05 2011 %E A080688 Keyword tabf added and definition complemented accordingly by _Reinhard Zumkeller_, Oct 01 2012