cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.

This page as a plain text file.
%I A080688 #19 Jul 12 2024 21:54:24
%S A080688 1,2,3,4,5,7,6,11,13,8,10,17,9,19,14,23,29,12,15,22,31,37,26,41,21,43,
%T A080688 16,20,25,34,47,53,18,33,38,59,61,28,35,46,67,39,71,58,73,79,24,30,44,
%U A080688 51,55,62,83,49,89,74,97,27,57,101,52,65,82
%N A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.
%C A080688 The number 12 can be written as 3*2*2, 4*3, 6*2 and 12 corresponding to each of the four values (12,15,22,31) in the example. Note that A001055(12) = 4. Since A001055(n) depends only on the least prime signature, the values 1,2,4,6,8,12,16,24,30,32,36,... A025487 are of special interest when counting multisets. (see for example, A035310 and A035341).
%C A080688 A064553(T(n,k)) = A080444(n,k) = n for k=1..A001055(n); T(n,1) = A064554(n); T(n,A001055(n)) = A064554(n). - _Reinhard Zumkeller_, Oct 01 2012
%C A080688 Row n is the sorted list of shifted Heinz numbers of factorizations of n into factors > 1, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - _Gus Wiseman_, Sep 05 2018
%H A080688 Reinhard Zumkeller, <a href="/A080688/b080688.txt">Rows n = 1..1000 of triangle, flattened</a>
%e A080688 a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36)
%e A080688 From _Gus Wiseman_, Sep 05 2018: (Start)
%e A080688 Triangle begins:
%e A080688    1
%e A080688    2
%e A080688    3
%e A080688    4  5
%e A080688    7
%e A080688    6 11
%e A080688   13
%e A080688    8 10 17
%e A080688    9 19
%e A080688   14 23
%e A080688   29
%e A080688   12 15 22 31
%e A080688   37
%e A080688   26 41
%e A080688   21 43
%e A080688   16 20 25 34 47
%e A080688 Corresponding triangle of factorizations begins:
%e A080688   (),
%e A080688   (2),
%e A080688   (3),
%e A080688   (2*2), (4),
%e A080688   (5),
%e A080688   (2*3), (6),
%e A080688   (7),
%e A080688   (2*2*2), (2*4), (8),
%e A080688   (3*3), (9),
%e A080688   (2*5), (10),
%e A080688   (11),
%e A080688   (2*2*3), (3*4), (2*6), (12).
%e A080688 (End)
%t A080688 facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
%t A080688 Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* _Gus Wiseman_, Sep 05 2018 *)
%o A080688 (Haskell)
%o A080688 a080688 n k = a080688_row n !! (k-1)
%o A080688 a080688_row n = map (+ 1) $ take (a001055 n) $
%o A080688                 elemIndices n $ map fromInteger a064553_list
%o A080688 a080688_tabl = map a080688_row [1..]
%o A080688 a080688_list = concat a080688_tabl
%o A080688 -- _Reinhard Zumkeller_, Oct 01 2012
%Y A080688 Cf. A001055, A025487, A035310, A035341, A064553, A080444.
%Y A080688 Cf. A007716, A056239, A162247, A215366, A275024, A317144, A317145, A318871.
%K A080688 easy,nonn,tabf
%O A080688 1,2
%A A080688 _Alford Arnold_, Mar 23 2003
%E A080688 More terms from _Sean A. Irvine_, Oct 05 2011
%E A080688 Keyword tabf added and definition complemented accordingly by _Reinhard Zumkeller_, Oct 01 2012