cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080693 Numbers of the form p^2*q + r*s where p,q,r,s are (not necessarily distinct) primes.

Original entry on oeis.org

12, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Mario Maqueda Garcia [Garci'a] (israelmira(AT)terra.es), Mar 03 2003

Keywords

Comments

A conjecture of Goldbach type says every number >= 26 is of this form.

Examples

			12=2^2*2 + 2*2
		

Crossrefs

Cf. A081053.

Programs

  • Maple
    H := proc(n::posint) local p,q,r,s; p := 2; while p<=floor(sqrt((n-4)/2)) do q := 2; while q<=floor((n-4)/p^2) do s := 2; while s<=floor((n-p^2*q)/2) do r := (n-p^2*q)/s; if type(r,posint) then if isprime(r) then return(true,p,q,s,r); end if; end if; s := nextprime(s); end do; q := nextprime(q); end do; p := nextprime(p); end do; return(false); end:
  • Mathematica
    Take[ Union[ Flatten[ Table[ Prime[p]^2*Prime[q] + Prime[r]*Prime[s], {p, 1, 6}, {q, 1, 15}, {r, 1, 15}, {s, 1, 15}]]], 70]

Extensions

Edited and extended by Robert G. Wilson v, Mar 05 2003