This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080718 #32 Apr 21 2025 02:35:15 %S A080718 1,1255,12955,17482,25105,100255,101299,105295,107329,117067,124483, %T A080718 127417,129595,132565,145273,146137,149782,174082,174298,174793, %U A080718 174982,250105,256315,263155,295105,297463,307183,325615,371893,536539 %N A080718 1, together with numbers n that are the product of two primes p and q such that the multiset of the digits of n coincides with the multiset of the digits of p and q. %C A080718 Except for 1, this sequence is a subsequence of A280928. More specifically, members of A280928 are also members of this sequence if and only if they are semiprime. - _Ely Golden_, Jan 11 2017 %C A080718 This sequence has no equivalent in odd bases. This is because any equivalent of A280928 in an odd base must have all terms having at least 3 prime factors. - _Ely Golden_, Jan 11 2017 %C A080718 All entries other than 1 are congruent to 4 mod 9, because p*q == p + q mod 9 (with p and q not both divisible by 3) implies p*q == 4 mod 9. - _Robert Israel_, May 05 2014 %H A080718 Michael S. Branicky, <a href="/A080718/b080718.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..145 from Robert Israel) %e A080718 1255 = 5*251, 12955 = 5*2591, 17482 = 2*8741, 100255 = 5*20051, 146137=317*461, etc. %p A080718 filter:= proc(n) local F,p,q,Ln,Lpq; %p A080718 F:= ifactors(n)[2]; %p A080718 if nops(F) > 2 or convert(F,`+`)[2]<>2 then return false fi; %p A080718 p:= F[1][1]; %p A080718 if nops(F) = 2 then q:= F[2][1] else q:= F[1][1] fi; %p A080718 Ln:= sort(convert(n,base,10)); %p A080718 Lpq:= sort([op(convert(p,base,10)),op(convert(q,base,10))]); %p A080718 evalb(Ln = Lpq); %p A080718 end proc: %p A080718 filter(1):= true: %p A080718 A080718:= select(filter,[1, seq(4+9*i,i=1..10^6)]); # _Robert Israel_, May 04 2014 %t A080718 ptpQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]],fi=Transpose[ FactorInteger[ n]]}, fi[[2]]=={1,1}&&Sort[Flatten[ IntegerDigits/@ fi[[1]]]]==sidn]; Join[{1}, Select[Range[4,550000,9],ptpQ]] (* _Harvey P. Dale_, Jun 22 2014 *) %o A080718 (Python) %o A080718 from sympy import factorint %o A080718 from itertools import count, islice %o A080718 def agen(): # generator %o A080718 yield 1 %o A080718 for k in count(4, 9): %o A080718 t = sorted(str(k)) %o A080718 f = factorint(k) %o A080718 if sum(f.values()) == 2: %o A080718 p, q = min(f), max(f) %o A080718 if t == sorted(str(p)+str(q)): %o A080718 yield k %o A080718 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Apr 20 2025 %Y A080718 The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563. %K A080718 nonn,base %O A080718 1,2 %A A080718 _Jeff Heleen_, Mar 06 2003 %E A080718 Edited by _N. J. A. Sloane_, Jan 03 2009 %E A080718 Incorrect entry 163797 removed by _Robert Israel_, May 04 2014