cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080729 Decimal expansion of the infinite product of zeta functions for even arguments.

This page as a plain text file.
%I A080729 #43 Feb 16 2025 08:32:48
%S A080729 1,8,2,1,0,1,7,4,5,1,4,9,9,2,9,2,3,9,0,4,0,6,7,2,5,1,3,2,2,2,6,0,0,6,
%T A080729 8,4,8,5,7,8,2,6,8,0,2,8,6,4,8,2,7,1,7,5,5,0,0,2,0,9,3,8,0,0,2,8,6,0,
%U A080729 6,5,8,8,6,7,7,0,5,4,8,8,9,3,6,3,9,6,0,2,4,9,7,5,2,1,4,5,2,9,7,6,6,1,0,9,9
%N A080729 Decimal expansion of the infinite product of zeta functions for even arguments.
%C A080729 By elementary estimates, the constant lies in the open interval (Pi/6, exp(3/4)). - _Bernd C. Kellner_, May 18 2024
%H A080729 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 658.
%H A080729 Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers, Vol. 9 (2009), Article #A08, pp. 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006.
%H A080729 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AbelianGroup.html">Abelian group</a>.
%F A080729 Decimal expansion of zeta(2)*zeta(4)*...*zeta(2k)*...
%F A080729 If u(k) denotes the number of Abelian groups with group order k (A000688), then Product_{k>=1} zeta(2*k) = Sum_{k>=1} u(k)/k^2. - _Benoit Cloitre_, Jun 25 2003
%F A080729 Equals A021002/A080730. - _Amiram Eldar_, Jan 31 2024
%F A080729 This constant C is connected with the product of values of the Dedekind eta function on the upper imaginary axis. The product runs over the primes, where i is the imaginary unit: 1/C = Product_{prime p} (p^(1/12) * eta(i * log(p) / Pi)). - _Bernd C. Kellner_, May 18 2024
%e A080729 1.82101745149929239040672513222600684857...
%t A080729 RealDigits[Product[Zeta[2n],{n,500}],10,110][[1]] (* _Harvey P. Dale_, Jan 31 2012 *)
%o A080729 (PARI) prodinf(k=1, zeta(2*k)) \\ _Vaclav Kotesovec_, Jan 29 2024
%Y A080729 Cf. A000688, A021002, A076813, A080730, A369634.
%K A080729 cons,nonn
%O A080729 1,2
%A A080729 Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003
%E A080729 More terms from _Benoit Cloitre_, Mar 08 2003