This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080794 #13 Sep 11 2022 00:34:34 %S A080794 7,73,94,217,281,309,321,324,325,392,624,715,751,841,886,945,976,1307, %T A080794 1384,1395,1491,1492,1532,1723,1785,1970,2741,2845,2956,2971,2977, %U A080794 3593,3637,3673,3751,3805,4153,4230,4321,4345,4391,4437,4759,4978,4980,5174,5317 %N A080794 Numbers k whose digits are all contained, in any order, within the digits of prime(k). %H A080794 Michael S. Branicky, <a href="/A080794/b080794.txt">Table of n, a(n) for n = 1..10000</a> %e A080794 6347 is a term because prime(6347) = 63347. %e A080794 886 is a term because prime(886) = 6883. %e A080794 11 is not a term because prime(11) = 31, which does not contain two 1's. %t A080794 okQ[n_] := Module[{idnp=IntegerDigits[Prime[n]], sidn=Sort[IntegerDigits[n]]}, Intersection[idnp, sidn]==sidn]; Select[Range[10000], okQ] %o A080794 (Python) %o A080794 from sympy import nextprime %o A080794 from collections import Counter %o A080794 from itertools import count, islice %o A080794 def agen2(): # generator of terms %o A080794 pk = 2 %o A080794 for k in count(1): %o A080794 cpk, ck = Counter(str(pk)), Counter(str(k)) %o A080794 if all(cpk[d] >= ck[d] for d in ck): yield (k, pk) %o A080794 pk = nextprime(pk) %o A080794 print(list(islice(agen2(), 47))) # _Michael S. Branicky_, Sep 10 2022 %K A080794 base,easy,nonn %O A080794 1,1 %A A080794 _Harvey P. Dale_, Mar 13 2003 %E A080794 Missing terms inserted by _Michael S. Branicky_, Sep 10 2022