A080851 Square array of pyramidal numbers, read by antidiagonals.
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Examples
Array begins (n>=0, k>=0): 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411 1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
See A257199 for another version of this array.
Programs
-
Derive
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
Maple
A080851 := proc(n,k) binomial(k+3,3)+(n-1)*binomial(k+2,3) ; end proc: seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
Mathematica
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
Formula
T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016
Comments