This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080852 #49 May 05 2023 11:03:25 %S A080852 1,1,4,1,5,10,1,6,15,20,1,7,20,35,35,1,8,25,50,70,56,1,9,30,65,105, %T A080852 126,84,1,10,35,80,140,196,210,120,1,11,40,95,175,266,336,330,165,1, %U A080852 12,45,110,210,336,462,540,495,220,1,13,50,125,245,406,588,750,825,715,286 %N A080852 Square array of 4D pyramidal numbers, read by antidiagonals. %C A080852 The first row contains the tetrahedral numbers, which are really three-dimensional, but can be regarded as degenerate 4D pyramidal numbers. - _N. J. A. Sloane_, Aug 28 2015 %H A080852 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %F A080852 T(n, k) = binomial(k + 4, 4) + (n-1)*binomial(k + 3, 4), corrected Oct 01 2021. %F A080852 T(n, k) = T(n - 1, k) + C(k + 3, 4) = T(n - 1, k) + k(k + 1)(k + 2)(k + 3)/24. %F A080852 G.f. for rows: (1 + nx)/(1 - x)^5, n >= -1. %F A080852 T(n,k) = sum_{j=0..k} A080851(n,j). - _R. J. Mathar_, Jul 28 2016 %e A080852 Array, n >= 0, k >= 0, begins %e A080852 1 4 10 20 35 56 ... %e A080852 1 5 15 35 70 126 ... %e A080852 1 6 20 50 105 196 ... %e A080852 1 7 25 65 140 266 ... %e A080852 1 8 30 80 175 336 ... %p A080852 A080852 := proc(n,k) %p A080852 binomial(k+4,4)+(n-1)*binomial(k+3,4) ; %p A080852 end proc: %p A080852 seq( seq(A080852(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Oct 01 2021 %t A080852 T[n_, k_] := Binomial[k+3, 3] + Binomial[k+3, 4]n; %t A080852 Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 05 2023 *) %o A080852 (Derive) vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^5,x,11),x,n),n,0,11),k,-1,10) %o A080852 (Derive) VECTOR(VECTOR(comb(k+3,3)+comb(k+3,4)n, k, 0, 11), n, 0, 11) %Y A080852 Rows include A000292, A000332, A002415, A001296, A002418, A002419, A051740, A051797. %Y A080852 Cf. A057145, A080851, A180266, A055796 (antidiagonal sums). %Y A080852 See A257200 for another version of the array. %K A080852 easy,nonn,tabl %O A080852 0,3 %A A080852 _Paul Barry_, Feb 21 2003