This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080853 #7 Oct 01 2021 09:07:09 %S A080853 1,1,1,1,2,1,1,3,4,1,1,4,9,7,1,1,5,16,19,11,1,1,6,25,37,33,16,1,1,7, %T A080853 36,61,67,51,22,1,1,8,49,91,113,106,73,29,1,1,9,64,127,171,181,154,99, %U A080853 37,1,1,10,81,169,241,276,265,211,129,46,1,1,11,100,217,323,391,406,365,277 %N A080853 Square array of generalized polygonal numbers, read by antidiagonals. %F A080853 T(n, k)=C(k, 0)+C(k, 1)n+C(k, 2)n^2=(n^2*k^2-(n^2-2n)*k+2)/2 =(k(k-1)*n^2+2k*n+2)/2 %F A080853 Row n has g.f. (1+(n-2)x+(n^2-n+1)x^2)/(1-x)^3. %F A080853 Column k has g.f. (C(k-1, 0)+(C(k+1, 2)-2)*x+C(k-1, 2)*x^2)/(1-x)^3. %F A080853 Diagonals are given by (n^4+(2k-1)*n^3+((k-1)^2+1)*n^2+(1-(k-1)^2)*n+2)/2. %F A080853 Antidiagonal sums are 1, 2, 4, 9, 22, 53, 119,... = (d+1)*(2*d^4-7*d^3+27*d^2-22*d+120)/120 = sum_{k=0..d} T(d-k,k), first differences in A116701, d>=0. - _R. J. Mathar_, Oct 01 2021 %e A080853 Rows begin with n>=0, k>=0 %e A080853 1 1 1 1 1 ... %e A080853 1 2 4 7 11 ... %e A080853 1 3 9 19 33 ... %e A080853 1 4 16 37 67 ... %e A080853 1 5 25 61 113 ... %p A080853 A080853 := proc(n,k) %p A080853 binomial(k,0)+n*binomial(k,1)+n^2*binomial(k,2) ; %p A080853 end proc: %p A080853 seq( seq(A080853(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Oct 01 2021 %Y A080853 Rows include A000124, A058331, A080855, A080856, A080857, A080919. %Y A080853 Columns include A000290, A003215, A003215, A080859, A080860, A080861. %K A080853 easy,nonn,tabl %O A080853 0,5 %A A080853 _Paul Barry_, Feb 23 2003