A080899 Primes p(k) such that every composite number between p(k) and p(k+1) has exactly three distinct prime factors.
29, 41, 59, 101, 137, 149, 179, 197, 227, 239, 269, 281, 311, 347, 521, 599, 617, 641, 643, 739, 809, 821, 827, 881, 1031, 1061, 1277, 1451, 1487, 1579, 1607, 1619, 1667, 1697, 1787, 1871, 1877, 1997, 2027, 2081, 2087, 2111, 2237, 2267, 2293, 2381
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
See A075583 for another version.
Programs
-
Mathematica
Select[Partition[Prime[Range[2, 360]], 2, 1], AllTrue[Range[First[#]+1, Last[#]-1], PrimeNu[#1] == 3 &] &][[;;,1]] (* Amiram Eldar, Sep 14 2024 *)
-
PARI
forprime(p=3, 3000, f=0; for(k=p+1, nextprime(p+1)-1, if(omega(k)!=3, f=1; break)); if(!f, print1(p", ")))