This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080929 #38 Sep 08 2022 08:45:09 %S A080929 1,3,12,40,120,336,896,2304,5760,14080,33792,79872,186368,430080, %T A080929 983040,2228224,5013504,11206656,24903680,55050240,121110528, %U A080929 265289728,578813952,1258291200,2726297600,5888802816,12683575296,27246198784 %N A080929 Sequence associated with a(n) = 2*a(n-1) + k*(k+2)*a(n-2). %C A080929 The third column of number triangle A080928. %H A080929 Vincenzo Librandi, <a href="/A080929/b080929.txt">Table of n, a(n) for n = 0..1000</a> %H A080929 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8). %F A080929 G.f.: (1-x)*(1-2*x+4*x^2)/(1-2*x)^3. %F A080929 For n>0, a(n) = (n+1)*(n+2)*2^(n-2). - _Ralf Stephan_, Jan 16 2004 %F A080929 a(n) = Sum_{k=0..n} Sum_{i=0..n} (k+1)*binomial(n-1,i). - _Wesley Ivan Hurt_, Sep 20 2017 %F A080929 From _Amiram Eldar_, Jan 07 2022: (Start) %F A080929 Sum_{n>=0} 1/a(n) = 7 - 8*log(2). %F A080929 Sum_{n>=0} (-1)^n/a(n) = 24*log(3/2) - 9. (End) %p A080929 [seq (ceil(binomial(n+2,2)*2^(n-1)),n=0..30)]; # _Zerinvary Lajos_, Nov 01 2006 %t A080929 CoefficientList[Series[(1-x)(1-2x+4x^2)/(1-2x)^3, {x,0,30}], x] (* _Michael De Vlieger_, Sep 21 2017 *) %t A080929 Join[{1}, LinearRecurrence[{6,-12,8}, {3,12,40}, 30]] (* _G. C. Greubel_, Jul 23 2019 *) %o A080929 (Magma) [n eq 0 select 1 else (n+1)*(n+2)*2^(n-2): n in [0..30]]; // _Vincenzo Librandi_, Sep 22 2011 %o A080929 (PARI) vector(30, n, n--; if(n==0,1, 2^(n-1)*binomial(n+2,2) )) \\ _G. C. Greubel_, Jul 23 2019 %o A080929 (Sage) [1]+[2^(n-1)*binomial(n+2,2) for n in (1..30)] # _G. C. Greubel_, Jul 23 2019 %o A080929 (GAP) Concatenation([1], List([1..30], n-> 2^(n-1)*Binomial(n+2,2))); # _G. C. Greubel_, Jul 23 2019 %Y A080929 Essentially the same as A052482. %Y A080929 Cf. A082140, A082141, A082138, A082139, A080951, A080929, A057711. %K A080929 nonn,easy %O A080929 0,2 %A A080929 _Paul Barry_, Feb 26 2003