cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.

This page as a plain text file.
%I A080934 #114 Aug 27 2025 11:40:25
%S A080934 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,4,1,0,1,1,2,5,8,1,0,1,1,2,5,13,
%T A080934 16,1,0,1,1,2,5,14,34,32,1,0,1,1,2,5,14,41,89,64,1,0,1,1,2,5,14,42,
%U A080934 122,233,128,1,0,1,1,2,5,14,42,131,365,610,256,1,0,1,1,2,5,14,42,132,417,1094,1597,512,1,0
%N A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.
%C A080934 Number of permutations in S_n avoiding both 132 and 123...k.
%C A080934 T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - _Mitch Harris_, Mar 06 2004
%C A080934 Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - _Clark Kimberling_ and _Ralf Stephan_, May 26 2004
%C A080934 Row n of the array gives Taylor series expansion of F_n(t)/F_{n+1}(t), where F_n(t) are the Fibonacci polynomials defined in A259475 [Kreweras, 1970]. - _N. J. A. Sloane_, Jul 03 2015
%H A080934 Alois P. Heinz, <a href="/A080934/b080934.txt">Antidiagonals n = 0..140, flattened</a>
%H A080934 Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, <a href="https://arxiv.org/abs/2408.15000">Pattern-restricted cyclic permutations with a pattern-restricted cycle form</a>, arXiv:2408.15000 [math.CO], 2024. See also <a href="https://doi.org/10.54550/ECA2025V5S1R3">Enum. Comb. Appl.</a> (2025) Vol. 5, No. 1, Art. No. S2R3. See p. 7.
%H A080934 Nicolaas Govert de Bruijn, Donald E. Knuth, and Stephen O. Rice, <a href="http://alexandria.tue.nl/repository/freearticles/597601.pdf">The Average Height of Planted Plane Trees</a>, Graph Theory and Computing, (1972) 15-22.
%H A080934 Yann Dijoux, <a href="https://arxiv.org/abs/2501.04703">Chebyshev polynomials involved in the Householder's method for square roots</a>, arXiv:2501.04703 [math.GM], 2024. Mentions this sequence.
%H A080934 Andrzej Dudek, Jarosław Grytczuk, and Andrzej Ruciński, <a href="https://arxiv.org/abs/2402.02223">Largest bipartite sub-matchings of a random ordered matching or a problem with socks</a>, arXiv:2402.02223 [math.CO], 2024.
%H A080934 Nickolas Hein and Jia Huang, <a href="https://arxiv.org/abs/1807.04623">Variations of the Catalan numbers from some nonassociative binary operations</a>, arXiv:1807.04623 [math.CO], 2018.
%H A080934 Aleksandar Ilic and Andreja Ilic, <a href="http://dx.doi.org/10.2298/FIL1103191I">On the number of restricted Dyck paths</a>, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I.
%H A080934 Anthony Joseph and Polyxeni Lamprou, <a href="http://arxiv.org/abs/1512.00406">A new interpretation of Catalan numbers</a>, arXiv preprint arXiv:1512.00406 [math.CO], 2015.
%H A080934 Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, <a href="https://arxiv.org/abs/2006.06949">Patterns in Shi tableaux and Dyck paths</a>, arXiv:2006.06949 [math.CO], 2020.
%H A080934 Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I,</a> arXiv:1201.6243v1 [math.CO], 2012 (page 10, Corollary 3).
%H A080934 Christian Krattenthaler, <a href="https://arxiv.org/abs/math/0002200">Permutations with restricted patterns and Dyck paths</a>, arXiv:math/0002200 [math.CO], 2000.
%H A080934 Germain  Kreweras, <a href="http://www.numdam.org/item?id=BURO_1970__15__3_0">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationelle, Cahier no. 15, Paris, 1970, pp. 3-41. See page 38.
%H A080934 Germain Kreweras, <a href="/A000108/a000108_1.pdf">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
%H A080934 Erkko Lehtonen and Tamás Waldhauser, <a href="https://arxiv.org/abs/2011.07621">Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs</a>, arXiv:2011.07621 [math.CO], 2020. See also <a href="https://doi.org/10.1007/s10801-020-01010-w">J. of Algebraic Combinatorics</a> (2021) Vol. 53, 613-638.
%H A080934 Toufik Mansour, <a href="https://arxiv.org/abs/math/0302014">Restricted even permutations and Chebyshev polynomials</a>, arXiv:math/0302014 [math.CO], 2003.
%H A080934 Toufik Mansour and Alek Vainshtein, <a href="https://arxiv.org/abs/math/9912052">Restricted permutations, continued fractions and Chebyshev polynomials</a>, arXiv:math/9912052 [math.CO], 1999-2000.
%H A080934 Dimana Miroslavova Pramatarova, <a href="https://www.cee.org/sites/default/files/rsi/Papers/pramatarovadimana_193982_5452885_Pramatarova_Dimana_AnaMaria_Final.pdf">Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions</a>, MIT Res. Sci. Instit. (2025). See pp. 5-6.
%H A080934 Thomas Tunstall, Tim Rogers, and Wolfram Möbius, <a href="https://arxiv.org/abs/2303.01579">Assisted percolation of slow-spreading mutants in heterogeneous environments</a>, arXiv:2303.01579 [q-bio.PE], 2023.
%H A080934 Vince White, <a href="https://digitalcommons.georgiasouthern.edu/etd/2799">Enumeration of Lattice Paths with Restrictions</a>, (2024). Electronic Theses and Dissertations. 2799. See pp. 20, 25.
%F A080934 T(n, k) = Sum_{0<i<n} T(i, k)*T(n-i, k-1) with T(0, k) = 1 and T(n, 0) = 0^n. For 1<=k<=n T(n, k) = A080935(n, k) = T(n, k-1)+A080936(n, k); for k>=n T(n, k) = A000108(n).
%F A080934 T(n, k) = 2^(2n+1)/(k+2) * Sum_{i=1..k+1} (sin(Pi*i/(k+2))*cos(Pi*i/(k+2))^n)^2 for n>=1. - _Herbert Kociemba_, Apr 28 2004
%F A080934 G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.
%e A080934 T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
%e A080934 From _Peter Luschny_, Aug 27 2014: (Start)
%e A080934 Trees with n nodes and height <= h:
%e A080934 h\n  1  2  3  4   5   6    7    8     9    10     11
%e A080934 ---------------------------------------------------------
%e A080934 [ 1] 1, 0, 0, 0,  0,  0,   0,   0,    0,    0,     0, ...  A063524
%e A080934 [ 2] 1, 1, 1, 1,  1,  1,   1,   1,    1,    1,     1, ...  A000012
%e A080934 [ 3] 1, 1, 2, 4,  8, 16,  32,  64,  128,  256,   512, ...  A011782
%e A080934 [ 4] 1, 1, 2, 5, 13, 34,  89, 233,  610, 1597,  4181, ...  A001519
%e A080934 [ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281,  9842, ...  A124302
%e A080934 [ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ...  A080937
%e A080934 [ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ...  A024175
%e A080934 [ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ...  A080938
%e A080934 [ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ...  A033191
%e A080934 [10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ...  A211216
%e A080934 ---------------------------------------------------------
%e A080934 The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
%e A080934 (End)
%p A080934 # As a triangular array:
%p A080934 b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
%p A080934       `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
%p A080934     end:
%p A080934 A:= (n, k)-> b(2*n, 0, k):
%p A080934 seq(seq(A(n, d-n), n=0..d), d=0..12);  # _Alois P. Heinz_, Aug 06 2012
%p A080934 # As a square array:
%p A080934 A := proc(n,k) option remember; local j; if n = 1 then 1 elif k = 1 then 0 else add(A(n-j,k)*A(j,k-1), j=1..n-1) fi end:
%p A080934 linalg[matrix](10, 12, (n,k) -> A(k,n)); # _Peter Luschny_, Aug 27 2014
%t A080934 A[n_, k_] := A[n, k] = Which[n == 1, 1, k == 1, 0, True, Sum[A[n-j, k]*A[j, k-1], {j, 1, n-1}]]; Table[A[k-n+1, n], {k, 1, 13}, {n, k, 1, -1}] // Flatten (* _Jean-François Alcover_, Feb 19 2015, after _Peter Luschny_ *)
%o A080934 (PARI)
%o A080934 A(N, K) = {
%o A080934   my(m = matrix(N, K, n, k, n==1));
%o A080934   for (n = 2, N,
%o A080934   for (k = 2, K,
%o A080934        m[n,k] = sum(i = 1, n-1, m[n-i,k] * m[i,k-1])));
%o A080934   return(m);
%o A080934 }
%o A080934 A(11,10)~  \\ _Gheorghe Coserea_, Jan 13 2016
%Y A080934 Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191, A211216. Main diagonal is A000108.
%Y A080934 Cf. A094718 (involutions). Cf. also A259475.
%K A080934 nonn,tabl,changed
%O A080934 0,13
%A A080934 _Henry Bottomley_, Feb 25 2003