This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080953 #15 Nov 18 2017 18:46:12 %S A080953 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3775,24915,0,0,113250,604000,0, %T A080953 0,30256625,133993625,0,0,8292705580,31097645925,0,0,1302257122605, %U A080953 4196161839505,0,0,113402818847850,317527892773980,0 %N A080953 Weight distribution of [151,76,19] binary quadratic-residue (or QR) code. %C A080953 Taken from the Tjhai-Tomlinson web site. %C A080953 According to Boston and Hao, the Tjhai-Tomlinson web site gives several erroneous values, but their book with Ambroze, Ahmed, and Jibril gives correct values. - _Eric M. Schmidt_, Nov 17 2017 %H A080953 Nigel Boston and Jing Hao, <a href="https://arxiv.org/abs/1705.06413">The Weight Distribution of Quasi-quadratic Residue Codes</a>, arXiv:1705.06413 [cs.IT], 2017. %H A080953 C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm"> Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a> [dead link] %H A080953 M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, M. Jibril, <a href="https://dx.doi.org/10.1007/978-3-319-51103-0">Error-Correction Coding and Decoding</a>, Springer, 2017, p. 285. %e A080953 The weight distribution is: %e A080953 i A_i %e A080953 0 1 %e A080953 19 3775 %e A080953 20 24915 %e A080953 23 113250 %e A080953 24 604000 %e A080953 27 30256625 %e A080953 28 133993625 %e A080953 31 8292705580 %e A080953 32 31097645925 %e A080953 35 1302257122605 %e A080953 36 4196161839505 %e A080953 39 113402818847850 %e A080953 40 317527892773980 %e A080953 43 5706949034630250 %e A080953 44 14007965812274250 %e A080953 47 171469716029462700 %e A080953 48 371517718063835850 %e A080953 51 3155019195317144883 %e A080953 52 6067344606379124775 %e A080953 55 36274321608490644595 %e A080953 56 62184551328841105020 %e A080953 59 264765917968736096775 %e A080953 60 405974407552062015055 %e A080953 63 1241968201959417159800 %e A080953 64 1707706277694198594725 %e A080953 67 3778485133479463579225 %e A080953 68 4667540459004043244925 %e A080953 71 7503425412744902320620 %e A080953 72 8337139347494335911800 %e A080953 75 9763682329503348632684 %e A080953 76 9763682329503348632684 %e A080953 79 8337139347494335911800 %e A080953 80 7503425412744902320620 %e A080953 83 4667540459004043244925 %e A080953 84 3778485133479463579225 %e A080953 87 1707706277694198594725 %e A080953 88 1241968201959417159800 %e A080953 91 405974407552062015055 %e A080953 92 264765917968736096775 %e A080953 95 62184551328841105020 %e A080953 96 36274321608490644595 %e A080953 99 6067344606379124775 %e A080953 100 3155019195317144883 %e A080953 103 371517718063835850 %e A080953 104 171469716029462700 %e A080953 107 14007965812274250 %e A080953 108 5706949034630250 %e A080953 111 317527892773980 %e A080953 112 113402818847850 %e A080953 115 4196161839505 %e A080953 116 1302257122605 %e A080953 119 31097645925 %e A080953 120 8292705580 %e A080953 123 133993625 %e A080953 124 30256625 %e A080953 127 604000 %e A080953 128 113250 %e A080953 131 24915 %e A080953 132 3775 %e A080953 151 1 %K A080953 nonn,fini %O A080953 0,20 %A A080953 _N. J. A. Sloane_, Apr 15 2009 %E A080953 Corrected (using the Tomlinson et al. book) by _Eric M. Schmidt_, Nov 17 2017