cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080959 Square array of coefficients of binomial polynomials, read by antidiagonals.

This page as a plain text file.
%I A080959 #13 May 11 2025 19:18:13
%S A080959 1,2,1,3,1,5,4,0,11,14,5,-2,20,14,94,6,-5,34,-10,214,444,7,-9,55,-74,
%T A080959 454,444,3828,8,-14,85,-200,974,-636,8868,25584,9,-20,126,-416,2024,
%U A080959 -4236,21468,25584,270576,10,-27,180,-756,3968,-13056,56748,-55056,633456,2342880,11,-35,249,-1260,7308,-31632,146208,-377616,1722096,2342880,29400480
%N A080959 Square array of coefficients of binomial polynomials, read by antidiagonals.
%H A080959 G. C. Greubel, <a href="/A080959/b080959.txt">Antidiagonals n = 1..50, flattened</a>
%F A080959 A(n, k) = k!*Sum_{j=1..k} (-1)^(j+1)*binomial(n+j, j)/j (array).
%F A080959 T(n, k) = A(n-k, k) (antidiagonals).
%e A080959 Array, A(n, k), begin as:
%e A080959    1,   1,   5,    14,    94,     444,    3828,      25584,     270576, ... A024167;
%e A080959    2,   1,  11,    14,   214,     444,    8868,      25584,     633456, ... A080958;
%e A080959    3,   0,  20,   -10,   454,    -636,   21468,     -55056,    1722096, ... ;
%e A080959    4,  -2,  34,   -74,   974,   -4236,   56748,    -377616,    5471856, ... ;
%e A080959    5,  -5,  55,  -200,  2024,  -13056,  146208,   -1325136,   16902576, ... ;
%e A080959    6,  -9,  85,  -416,  3968,  -31632,  348816,   -3695952,   47457072, ... ;
%e A080959    7, -14, 126,  -756,  7308,  -67032,  766296,   -9004752,  120758832, ... ;
%e A080959    8, -20, 180, -1260, 12708, -129672, 1563336,  -19925712,  281929392, ... ;
%e A080959    9, -27, 249, -1974, 21018, -234252, 2993436,  -40917312,  611923392, ... ;
%e A080959   10, -35, 335, -2950, 33298, -400812, 5431116,  -79073472, 1248697152, ... ;
%e A080959   11, -44, 440, -4246, 50842, -655908, 9411204, -145250688, 2417424768, ... ;
%e A080959 Antidiagonals, T(n, k), begin as:
%e A080959    1;
%e A080959    2,   1;
%e A080959    3,   1,   5;
%e A080959    4,   0,  11,    14;
%e A080959    5,  -2,  20,    14,   94;
%e A080959    6,  -5,  34,   -10,  214,    444;
%e A080959    7,  -9,  55,   -74,  454,    444,   3828;
%e A080959    8, -14,  85,  -200,  974,   -636,   8868,   25584;
%e A080959    9, -20, 126,  -416, 2024,  -4236,  21468,   25584,  270576;
%e A080959   10, -27, 180,  -756, 3968, -13056,  56748,  -55056,  633456, 2342880;
%e A080959   11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480;
%t A080959 A[n_, k_]:= k!*Sum[(-1)^(j+1)*Binomial[n+j,j]/j, {j,k}];
%t A080959 A080959[n_, k_]:= A[n-k, k];
%t A080959 Table[A080959[n,k], {n,0,12}, {k,n}]//Flatten (* _G. C. Greubel_, May 11 2025 *)
%o A080959 (Magma)
%o A080959 A:= func< n,k | Factorial(k)*(&+[(-1)^(j+1)*Binomial(n+j,j)/j: j in [1..k]]) >;
%o A080959 A080959:= func< n,k | A(n-k,k) >;
%o A080959 [A080959(n,k): k in [1..n], n in [0..12]]; // _G. C. Greubel_, May 11 2025
%o A080959 (SageMath)
%o A080959 def A(n,k): return factorial(k)*sum((-1)^(j+1)*binomial(n+j,j)/j for j in range(1,k+1))
%o A080959 def A080959(n,k): return A(n-k,k)
%o A080959 print(flatten([[A080959(n,k) for k in range(1,n+1)] for n in range(13)])) # _G. C. Greubel_, May 11 2025
%Y A080959 Cf. A024167, A080958.
%Y A080959 Columns: A000027 (k=1), A080956 (k=2), A080957 (k=3).
%K A080959 easy,sign,tabl
%O A080959 1,2
%A A080959 _Paul Barry_, Mar 01 2003