This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080959 #13 May 11 2025 19:18:13 %S A080959 1,2,1,3,1,5,4,0,11,14,5,-2,20,14,94,6,-5,34,-10,214,444,7,-9,55,-74, %T A080959 454,444,3828,8,-14,85,-200,974,-636,8868,25584,9,-20,126,-416,2024, %U A080959 -4236,21468,25584,270576,10,-27,180,-756,3968,-13056,56748,-55056,633456,2342880,11,-35,249,-1260,7308,-31632,146208,-377616,1722096,2342880,29400480 %N A080959 Square array of coefficients of binomial polynomials, read by antidiagonals. %H A080959 G. C. Greubel, <a href="/A080959/b080959.txt">Antidiagonals n = 1..50, flattened</a> %F A080959 A(n, k) = k!*Sum_{j=1..k} (-1)^(j+1)*binomial(n+j, j)/j (array). %F A080959 T(n, k) = A(n-k, k) (antidiagonals). %e A080959 Array, A(n, k), begin as: %e A080959 1, 1, 5, 14, 94, 444, 3828, 25584, 270576, ... A024167; %e A080959 2, 1, 11, 14, 214, 444, 8868, 25584, 633456, ... A080958; %e A080959 3, 0, 20, -10, 454, -636, 21468, -55056, 1722096, ... ; %e A080959 4, -2, 34, -74, 974, -4236, 56748, -377616, 5471856, ... ; %e A080959 5, -5, 55, -200, 2024, -13056, 146208, -1325136, 16902576, ... ; %e A080959 6, -9, 85, -416, 3968, -31632, 348816, -3695952, 47457072, ... ; %e A080959 7, -14, 126, -756, 7308, -67032, 766296, -9004752, 120758832, ... ; %e A080959 8, -20, 180, -1260, 12708, -129672, 1563336, -19925712, 281929392, ... ; %e A080959 9, -27, 249, -1974, 21018, -234252, 2993436, -40917312, 611923392, ... ; %e A080959 10, -35, 335, -2950, 33298, -400812, 5431116, -79073472, 1248697152, ... ; %e A080959 11, -44, 440, -4246, 50842, -655908, 9411204, -145250688, 2417424768, ... ; %e A080959 Antidiagonals, T(n, k), begin as: %e A080959 1; %e A080959 2, 1; %e A080959 3, 1, 5; %e A080959 4, 0, 11, 14; %e A080959 5, -2, 20, 14, 94; %e A080959 6, -5, 34, -10, 214, 444; %e A080959 7, -9, 55, -74, 454, 444, 3828; %e A080959 8, -14, 85, -200, 974, -636, 8868, 25584; %e A080959 9, -20, 126, -416, 2024, -4236, 21468, 25584, 270576; %e A080959 10, -27, 180, -756, 3968, -13056, 56748, -55056, 633456, 2342880; %e A080959 11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480; %t A080959 A[n_, k_]:= k!*Sum[(-1)^(j+1)*Binomial[n+j,j]/j, {j,k}]; %t A080959 A080959[n_, k_]:= A[n-k, k]; %t A080959 Table[A080959[n,k], {n,0,12}, {k,n}]//Flatten (* _G. C. Greubel_, May 11 2025 *) %o A080959 (Magma) %o A080959 A:= func< n,k | Factorial(k)*(&+[(-1)^(j+1)*Binomial(n+j,j)/j: j in [1..k]]) >; %o A080959 A080959:= func< n,k | A(n-k,k) >; %o A080959 [A080959(n,k): k in [1..n], n in [0..12]]; // _G. C. Greubel_, May 11 2025 %o A080959 (SageMath) %o A080959 def A(n,k): return factorial(k)*sum((-1)^(j+1)*binomial(n+j,j)/j for j in range(1,k+1)) %o A080959 def A080959(n,k): return A(n-k,k) %o A080959 print(flatten([[A080959(n,k) for k in range(1,n+1)] for n in range(13)])) # _G. C. Greubel_, May 11 2025 %Y A080959 Cf. A024167, A080958. %Y A080959 Columns: A000027 (k=1), A080956 (k=2), A080957 (k=3). %K A080959 easy,sign,tabl %O A080959 1,2 %A A080959 _Paul Barry_, Mar 01 2003