A081026 Variation on Ulam numbers: a(1) = 1; a(2) = 2; for n>2, a(n) = smallest (n odd) or largest (n even) number > a(n-1) that is a unique sum of two distinct earlier terms.
1, 2, 3, 5, 6, 11, 12, 23, 24, 47, 48, 95, 96, 191, 192, 383, 384, 767, 768, 1535, 1536, 3071, 3072, 6143, 6144, 12287, 12288, 24575, 24576, 49151, 49152, 98303, 98304, 196607, 196608, 393215, 393216, 786431, 786432, 1572863, 1572864, 3145727
Offset: 1
Keywords
References
- Dan Asimov, post to math-fun mailing list, Feb 11, 2003.
Formula
Appears that a(2k) = 3*2^(k-1)-1, a(2k+1) = 3*2^(k-1) for k >= 1.