cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081034 7th binomial transform of the periodic sequence (1,8,1,1,8,1...).

This page as a plain text file.
%I A081034 #14 Jul 23 2024 16:21:47
%S A081034 1,15,162,1548,13896,120240,1016352,8457408,69618816,568707840,
%T A081034 4620206592,37384915968,301618907136,2428188733440,19516934725632,
%U A081034 156684026953728,1256763510521856,10073855853527040,80709333444329472,646385587251314688,5175350216190590976,41428394838605168640
%N A081034 7th binomial transform of the periodic sequence (1,8,1,1,8,1...).
%H A081034 Harvey P. Dale, <a href="/A081034/b081034.txt">Table of n, a(n) for n = 0..1000</a>
%H A081034 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-48).
%F A081034 a(n) = 8*a(n-1) + 7*6^(n-1).
%F A081034 a(n) = (9/2)*8^n - (7/2)*6^n.
%F A081034 From _Harvey P. Dale_, Jun 16 2013: (Start)
%F A081034 a(0)=1, a(1)=15, a(n) = 14*a(n-1)-48*a(n-2).
%F A081034 G.f.: (x+1)/(48*x^2-14*x+1). (End)
%F A081034 E.g.f.: exp(6*x)*(9*exp(2*x) - 7)/2. - _Stefano Spezia_, Jul 23 2024
%t A081034 RecurrenceTable[{a[0]==1,a[n]==8a[n-1]+7*6^(n-1)},a,{n,20}] (* or *) LinearRecurrence[{14,-48},{1,15},20] (* _Harvey P. Dale_, Jun 16 2013 *)
%Y A081034 Cf. A081033, A081035.
%K A081034 easy,nonn
%O A081034 0,2
%A A081034 _Paul Barry_, Mar 03 2003