This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081041 #29 Jan 31 2025 15:06:34 %S A081041 1,11,96,756,5616,40176,279936,1912896,12877056,85660416,564350976, %T A081041 3688436736,23944605696,154551545856,992612745216,6347497291776, %U A081041 40435908673536,256721001578496,1624959306694656,10257555623510016 %N A081041 6th binomial transform of (1,5,0,0,0,0,0,0,...). %H A081041 Vincenzo Librandi, <a href="/A081041/b081041.txt">Table of n, a(n) for n = 0..300</a> %H A081041 Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3464&context=etd">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021. See p. 67. %H A081041 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-36). %F A081041 a(n) = 12*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=9. %F A081041 a(n) = (5*n+6)*6^(n-1). %F A081041 a(n) = Sum_{k=0..n} (k+1)*5^k*binomial(n, k). %F A081041 G.f.: (1-x)/(1-6*x)^2. %F A081041 E.g.f.: exp(6*x)*(1 + 5*x). - _Stefano Spezia_, Jan 31 2025 %t A081041 CoefficientList[Series[(1 - x)/(1 - 6 x)^2, {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 06 2013 *) %t A081041 LinearRecurrence[{12,-36},{1,11},20] (* _Harvey P. Dale_, Mar 04 2019 *) %o A081041 (Magma) [(5*n+6)*6^(n-1): n in [0..25]]; // _Vincenzo Librandi_, Aug 06 2013 %Y A081041 Cf. A081040, A081042. %K A081041 nonn,easy %O A081041 0,2 %A A081041 _Paul Barry_, Mar 04 2003