cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081046 Difference of the first two Stirling numbers of the first kind.

This page as a plain text file.
%I A081046 #17 Feb 13 2016 03:56:35
%S A081046 1,-2,5,-17,74,-394,2484,-18108,149904,-1389456,14257440,-160460640,
%T A081046 1965444480,-26029779840,370643938560,-5646837369600,91657072281600,
%U A081046 -1579093018675200,28779361764249600,-553210247226470400
%N A081046 Difference of the first two Stirling numbers of the first kind.
%F A081046 a(n) = s(n, 1)-s(n, 2), s(n, m) = signed Stirling number of the first kind.
%F A081046 E.g.f.: (1+x)^-1 * (1-log(1+x)).
%F A081046 Conjecture: a(n) +(2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Oct 27 2014
%t A081046 Table[StirlingS1[n+1, 1] - StirlingS1[n+1, 2], {n, 0, 20}] (* or *) Table[(-1)^n n! (1+HarmonicNumber[n]), {n, 0, 20}] (* _Jean-François Alcover_, Feb 11 2016 *)
%o A081046 (PARI) a(n) = stirling(n+1, 1, 1) - stirling(n+1, 2, 1); \\ _Michel Marcus_, Feb 11 2016
%Y A081046 Cf. A000254, A008275. Same as A000774 apart from signs.
%K A081046 easy,sign
%O A081046 0,2
%A A081046 _Paul Barry_, Mar 05 2003