cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081047 Difference of Stirling numbers of the first kind.

This page as a plain text file.
%I A081047 #21 Jan 08 2025 12:53:17
%S A081047 1,0,-1,-5,-26,-154,-1044,-8028,-69264,-663696,-6999840,-80627040,
%T A081047 -1007441280,-13575738240,-196287356160,-3031488633600,
%U A081047 -49811492505600,-867718162483200,-15974614352793600,-309920046408806400,-6320046028584960000
%N A081047 Difference of Stirling numbers of the first kind.
%H A081047 G. C. Greubel, <a href="/A081047/b081047.txt">Table of n, a(n) for n = 0..400</a>
%H A081047 Thierry Dana-Picard and David G. Zeitoun, <a href="http://dx.doi.org/10.1080/0020739X.2011.582172">Sequences of definite integrals, infinite series and Stirling numbers</a>, International Journal of Mathematical Education in Science and Technology, Volume 43, 2012 - Issue 2.
%H A081047 Motohico Mulase, <a href="https://arxiv.org/abs/2501.00716">In Search of a Hidden Curve</a>, arXiv:2501.00716 [math.QA], 2025. See p. 27.
%F A081047 E.g.f.: (1+log(1-x))/(1-x). - _Paul Barry_, Nov 26 2008
%F A081047 a(n) = abs(s(n+1, 1))-abs(s(n+1, 2)), where s(n, m) is a (signed) Stirling number of the first kind (A008275). (corrected by _Wolfdieter Lang_, Jun 20 2011)
%F A081047 a(n) = A094645(n+2,2), n>=0. - _Wolfdieter Lang, Jun 20 2011
%t A081047 With[{nn = 100}, CoefficientList[Series[(1 + Log[1 - x])/(1 - x), {x, 0, nn}], x] Range[0, nn]!] (* _G. C. Greubel_, Jan 21 2017 *)
%Y A081047 Cf. A001705, A008275, A081046.
%K A081047 easy,sign
%O A081047 0,4
%A A081047 _Paul Barry_, Mar 05 2003