This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081048 #43 Sep 08 2022 08:45:09 %S A081048 0,1,-3,11,-50,274,-1764,13068,-109584,1026576,-10628640,120543840, %T A081048 -1486442880,19802759040,-283465647360,4339163001600,-70734282393600, %U A081048 1223405590579200,-22376988058521600,431565146817638400,-8752948036761600000,186244810780170240000 %N A081048 Signed Stirling numbers of the first kind. %H A081048 Vincenzo Librandi, <a href="/A081048/b081048.txt">Table of n, a(n) for n = 0..200</a> %H A081048 Vladimir Reshetnikov, <a href="/A081048/a081048.txt">Proof Mathar's formula, Apr 24 2013</a> %F A081048 a(n) = n!*Sum {k=1..n} (-1)^(n+1)*1/k. %F A081048 E.g.f.: log(1+x)/(1+x). %F A081048 D-finite with recurrence a(n) = (2*n-1)*a(n-1) + (n-1)^2*a(n-2) = 0. (Proved by Reshetnikov.) - _R. J. Mathar_, Nov 24 2012 %F A081048 a(n) = (-1)^(n-1)*det(S(i+2,j+1), 1 <= i,j <= n-1), where S(n,k) are Stirling numbers of the second kind and n>0. - _Mircea Merca_, Apr 06 2013 %F A081048 a(n) ~ n! * (-1)^(n+1) * (log(n) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 05 2013 %e A081048 a(9): coefficient of p^2 in polynomial p (p - 1) (p - 2) (p - 3) (p - 4) (p - 5) (p - 6) (p - 7) (p - 8) = -1 + 40320 p - 109584 p^2 + 118124 p^3 - 67284 p^4 + 22449 p^5 - 4536 p^6 + 546 p^7 - 36 p^8 + p^9 is equal to -109584. - _Artur Jasinski_, Nov 30 2008 %p A081048 a:= proc(n) option remember; %p A081048 `if`(n<2, n, (1-2*n)*a(n-1) -(n-1)^2*a(n-2)) %p A081048 end: %p A081048 seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 06 2013 %t A081048 aa = {}; Do[AppendTo[aa,Coefficient[Expand[Product[p - n, {n, 0, m}]], p, 2]], {m, 1, 20}]; aa (* _Artur Jasinski_, Nov 30 2008 *) %t A081048 a[n_] := (-1)^(n+1)*n!*HarmonicNumber[n]; %t A081048 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 29 2017 *) %t A081048 Table[StirlingS1[n, 2], {n, 1, 20}] (* _Vaclav Kotesovec_, Mar 03 2022 *) %o A081048 (PARI) a(n)=stirling(n,2) \\ _Charles R Greathouse IV_, May 08 2015 %o A081048 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Log(1+x)/(1+x))); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // _G. C. Greubel_, Aug 28 2018 %Y A081048 Cf. A000254, A008275. %K A081048 sign %O A081048 0,3 %A A081048 _Paul Barry_, Mar 05 2003