cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081055 Number of partitions of 2n in which no parts are multiples of 4.

This page as a plain text file.
%I A081055 #15 Jul 28 2020 17:17:45
%S A081055 1,2,4,9,16,29,50,82,132,208,320,484,722,1060,1539,2210,3138,4416,
%T A081055 6163,8528,11716,15986,21666,29190,39104,52098,69060,91106,119634,
%U A081055 156416,203664,264128,341256,439321,563600,720648,918530,1167154,1478720
%N A081055 Number of partitions of 2n in which no parts are multiples of 4.
%C A081055 Euler transform of period 16 sequence [2,1,3,1,3,0,2,0,2,0,3,1,3,1,2,0,...].
%H A081055 Seiichi Manyama, <a href="/A081055/b081055.txt">Table of n, a(n) for n = 0..10000</a>
%F A081055 G.f.: (sum_{n>=0} x^A074378(n))/(sum_n (-x)^n^2).
%F A081055 a(n) = A001935(2n).
%F A081055 a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * n^(3/4)). - _Vaclav Kotesovec_, Nov 15 2017
%t A081055 Table[Count[IntegerPartitions[2n], x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 38}] (* _Robert Price_, Jul 28 2020 *)
%o A081055 (PARI) a(n)=local(X); if(n<0,0,X=x+x*O(x^(2*n)); polcoeff(eta(X^4)/eta(X),2*n))
%Y A081055 Cf. A001935, A074378, A081056.
%K A081055 nonn,easy
%O A081055 0,2
%A A081055 _Michael Somos_, Mar 03 2003