This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081070 #39 Jul 02 2025 16:02:01 %S A081070 0,5,45,320,2205,15125,103680,710645,4870845,33385280,228826125, %T A081070 1568397605,10749957120,73681302245,505019158605,3461452808000, %U A081070 23725150497405,162614600673845,1114577054219520,7639424778862805 %N A081070 Lucas(4n)-2, or 5*Fibonacci(2n)^2. %D A081070 Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75. %H A081070 Hang Gu and Robert M. Ziff, <a href="http://arxiv.org/abs/1111.5626">Crossing on hyperbolic lattices</a>, arXiv:1111.5626 [cond-mat.dis-nn], 2011-2012 (see Eq. 4). %H A081070 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1). %F A081070 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). %F A081070 a(n) = 5*A049684(n). %F A081070 G.f.: 5*x*(x+1)/((1-x)*(x^2-7*x+1)). - _Colin Barker_, Jun 24 2012 %p A081070 luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,luc(4*n)-2) od: # _James Sellers_, Mar 05 2003 %t A081070 LinearRecurrence[{8, -8, 1}, {0, 5, 45}, 20] (* _Jean-François Alcover_, Nov 24 2017 *) %o A081070 (Magma) [Lucas(4*n)-2: n in [0..30]]; // _Vincenzo Librandi_, Apr 21 2011 %o A081070 (PARI) a(n) = 5*fibonacci(2*n)^2; \\ _Michel Marcus_, Nov 24 2017 %Y A081070 Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A049684. %K A081070 nonn,easy %O A081070 0,2 %A A081070 _R. K. Guy_, Mar 04 2003