cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081093 a(n) is the smallest prime such that the number of 1's in its binary expansion is equal to the n-th prime.

This page as a plain text file.
%I A081093 #11 Mar 31 2012 13:21:28
%S A081093 3,7,31,127,3583,8191,131071,524287,14680063,1073479679,2147483647,
%T A081093 266287972351,4260607557631,17591112302591,246290604621823,
%U A081093 17996806323437567,1152917106560335871,2305843009213693951
%N A081093 a(n) is the smallest prime such that the number of 1's in its binary expansion is equal to the n-th prime.
%C A081093 a(n) = Min{p: A000120(p)=A000040(n), p prime}.
%C A081093 If 2^(Prime[n]) - 1 is a prime number, then a(n) = 2^(Prime[n]) - 1, where Prime[n] denotes the n-th prime number. This means that every Mersenne prime arises in this sequence. - _Stefan Steinerberger_, Jan 22 2006
%C A081093 For all n with prime(n) < 300, a(n) has either prime(n) or prime(n)+1 bits. - _David Wasserman_, Oct 25 2006
%F A081093 a(n) = A061712(A000040(n)). - _Franklin T. Adams-Watters_, Jun 06 2006
%e A081093 n=4, p[4]=11, 3583=[11011111111] has 11 digits=1 and is prime;
%e A081093 2047=23.89=[11111111111] is not here because it is composite.
%e A081093 a(5)=3583=A081092(266)=A000040(502) having eleven 1's: '110111111111' and A000120(p)<11=prime(5) for primes p<3583.
%e A081093 Mersenne-primes are here, Mersenne composites not.
%t A081093 Do[k=1;While[Count[IntegerDigits[Prime[k], 2], 1] !=Prime[n], k++ ];Print[Prime[k]], {n, 1, 10}]
%Y A081093 Cf. A000043, A000668, A001348, A061712, A000120, A014499.
%Y A081093 Cf. A000040, A000120, A081092.
%K A081093 base,nonn
%O A081093 1,1
%A A081093 _Reinhard Zumkeller_, Mar 05 2003
%E A081093 More terms from _Franklin T. Adams-Watters_, Jun 06 2006
%E A081093 Further terms from _David Wasserman_, Oct 25 2006
%E A081093 Edited by _N. J. A. Sloane_, Sep 15 2008 at the suggestion of R. J. Mathar