This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081094 #10 Oct 06 2017 08:41:17 %S A081094 2,-2,3,-4,5,-5,5,-5,7,-9,11,-10,10,-10,14,-16,20,-19,21,-19,26,-28, %T A081094 36,-31,37,-33,48,-46,63,-52,68,-53,82,-70,107,-78,117,-82,145,-104, %U A081094 181,-113,202,-113,244,-141,306,-149,346,-146,419,-171,514,-171,593,-152,714,-169,878,-143,1017,-87,1228,-64,1497 %N A081094 4th differences of partition numbers A000041. %C A081094 Comtet appears to say this is nonnegative, which is only true for n sufficiently large. %C A081094 An explanation is given by Odlyzko. - _Moshe Shmuel Newman_, Jun 11 2006 %D A081094 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115. %D A081094 A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), pp. 237-254 %H A081094 Vaclav Kotesovec, <a href="/A081094/b081094.txt">Table of n, a(n) for n = 0..10000</a> %H A081094 Almkvist, Gert, "<a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa61/aa6126.pdf">On the differences of the partition function</a>", Acta Arith., 61.2 (1992), 173-181. %F A081094 a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (144 * sqrt(3) * n^3). - _Vaclav Kotesovec_, Oct 06 2017 %Y A081094 Cf. A000041, A002865, A053445, A072380, A081095. %K A081094 sign %O A081094 0,1 %A A081094 _N. J. A. Sloane_, Apr 25 2003