This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081095 #17 Oct 06 2017 08:42:21 %S A081095 -4,5,-7,9,-10,10,-10,12,-16,20,-21,20,-20,24,-30,36,-39,40,-40,45, %T A081095 -54,64,-67,68,-70,81,-94,109,-115,120,-121,135,-152,177,-185,195, %U A081095 -199,227,-249,285,-294,315,-315,357,-385,447,-455,495,-492,565,-590,685,-685,764,-745,866,-883,1047,-1021,1160 %N A081095 5th differences of partition numbers A000041. %C A081095 Comtet appears to say this is nonnegative, which is only true for n sufficiently large. %C A081095 An explanation is given by Odlyzko. - _Moshe Shmuel Newman_, Jun 11 2006 %D A081095 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115. %D A081095 A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), pp. 237-254 %H A081095 Vaclav Kotesovec, <a href="/A081095/b081095.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi) %H A081095 Almkvist, Gert, "<a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa61/aa6126.pdf">On the differences of the partition function</a>", Acta Arith., 61.2 (1992), 173-181. %F A081095 a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^5 / (432 * sqrt(2) * n^(7/2)). - _Vaclav Kotesovec_, Oct 06 2017 %t A081095 Differences[PartitionsP[Range[0,70]],5] (* _Harvey P. Dale_, Jul 27 2014 *) %Y A081095 Cf. A000041, A002865, A053445, A072380, A081094. %K A081095 sign %O A081095 0,1 %A A081095 _N. J. A. Sloane_, Apr 25 2003