This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081120 #51 Feb 16 2025 08:32:48 %S A081120 1,2,0,4,0,0,4,1,0,0,4,0,2,0,2,0,0,2,2,2,0,0,2,0,2,4,1,6,0,0,0,0,0,0, %T A081120 2,0,0,0,6,2,0,0,0,2,2,0,6,4,2,0,0,0,4,2,4,2,0,0,0,4,2,0,4,1,0,0,2,0, %U A081120 0,0,2,2,0,2,0,4,0,0,2,0,2,0,2,0,0,0,2,0,2,0,0,0,0,0,2,0,0,0,0,6 %N A081120 Number of integral solutions to Mordell's equation y^2 = x^3 - n. %C A081120 Mordell's equation has a finite number of integral solutions for all nonzero n. %C A081120 Gebel, Pethö, and Zimmer (1998) computed the solutions for |n| <= 10^4. Bennett and Ghadermarzi (2015) extended this bound to |n| <= 10^7. %C A081120 Sequence A081121 gives n for which there are no integral solutions. See A081119 for the number of integral solutions to y^2 = x^3 + n. %C A081120 From _Jianing Song_, Aug 24 2022: (Start) %C A081120 If A060951(n) = 0 (namely the elliptic curve y^2 = x^3 - n has rank 0), then: %C A081120 - a(n) = 2 if n is of the form 432*t^6; %C A081120 - a(n) = 1 if n is a cube; %C A081120 - a(n) = 0 otherwise. %C A081120 This follows from the complete description of the torsion group of y^2 = x^3 + n, using O to denote the point at infinity (see Exercise 10.19 of Chapter X of Silverman's Arithmetic of elliptic curves): %C A081120 - If n = t^6 is a sixth power, then the torsion group consists of O, (2*t^2,+-3*t^3), (0,+-t^3), and (-t^2, 0). %C A081120 - If n = t^2 is not a sixth power, then the torsion group consists of O and (0,+-t). %C A081120 - If n = t^3 is not a sixth power, then the torsion group consists of O and (-t,0). %C A081120 - If n is of the form -432*t^6, then the torsion group consists of O and (12*t^2,+-36*t^3). %C A081120 - In all the other cases, the torsion group is trivial. %C A081120 So a torsion point on y^2 = x^3 + n other than O is an integral point. If y^2 = x^3 + n has rank 0, then all the integral points on y^2 = x^3 + n are exactly the torsion points other than O. %C A081120 Note that this result implies particularly that a(n) = a(n*t^6) for all t if A060951(n) = 0: the elliptic curve y^2 = x^3 - n*t^6 can be written as (y/t^3)^2 = (x/t^2)^3 - n, so it has the same Mordell-Weil group (hence the same rank and isomorphic torsion group) as y^2 = x^3 - n. (End) %D A081120 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191. %H A081120 Jean-François Alcover, <a href="/A081120/b081120.txt">Table of n, a(n) for n = 1..10000</a> [There were errors in the previous b-file, which had 10000 terms contributed by T. D. Noe and based on the work of J. Gebel.] %H A081120 M. A. Bennett and A. Ghadermarzi, <a href="http://www.math.ubc.ca/~bennett/BeGh-LMSJCM-2015.pdf">Mordell's equation: a classical approach</a>. LMS J. Compute. Math. 18 (2015): 633-646. <a href="https://doi.org/10.1112%2FS1461157015000182">doi:10.1112/S1461157015000182</a> <a href="https://arxiv.org/abs/1311.7077">arXiv:1311.7077</a> %H A081120 J. Gebel, A. Pethö, and H. G. Zimmer, <a href="https://doi.org/10.1023%2FA%3A1000281602647">On Mordell's equation</a>, Compositio Mathematica. 110:3 (1998): 335-367. %H A081120 J. Gebel, <a href="/A001014/a001014.txt">Integer points on Mordell curves</a> [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017] %H A081120 Joseph H. Silverman, <a href="https://www.math.ens.psl.eu/~benoist/refs/Silverman.pdf">The Arithmetic of Elliptic Curves</a>. %H A081120 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MordellCurve.html">Mordell Curve</a>. %H A081120 Wikipedia, <a href="https://en.wikipedia.org/wiki/Mordell_curve">Mordell curve</a>. %e A081120 a(4)=4 refers to (x,y) = (2,+-2) and (5,+-11). %t A081120 (* This naive approach gives correct results up to n=1000 *) xmax[_] = 10^4; Do[ xmax[n] = 10^5, {n, {366, 775, 999}}]; Do[ xmax[n] = 10^6, {n, {207, 307, 847}}]; f[n_] := (x = Floor[n^(1/3)] - 1; s = {}; While[ x <= xmax[n], x++; y2 = x^3 - n; If[y2 >= 0, y = Sqrt[y2]; If[ IntegerQ[y], AppendTo[s, y]]]]; s); a[n_] := (fn = f[n]; If[fn == {}, 0, 2 Length[fn] - If[ First[fn] == 0, 1, 0]]); Table[ an = a[n]; Print["a[", n, "] = ", an]; an, {n, 1, 100}] (* _Jean-François Alcover_, Mar 06 2012 *) %Y A081120 Cf. A081119, A081121. See A134109 for another version. %K A081120 nice,nonn %O A081120 1,2 %A A081120 _T. D. Noe_, Mar 06 2003 %E A081120 Edited by _Max Alekseyev_, Feb 06 2021