cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.

This page as a plain text file.
%I A081130 #18 Sep 08 2022 08:45:09
%S A081130 0,0,0,0,0,0,0,0,1,0,0,0,1,3,0,0,0,1,6,6,0,0,0,1,9,24,10,0,0,0,1,12,
%T A081130 54,80,15,0,0,0,1,15,96,270,240,21,0,0,0,1,18,150,640,1215,672,28,0,0,
%U A081130 0,1,21,216,1250,3840,5103,1792,36,0,0,0,1,24,294,2160,9375,21504,20412,4608,45,0
%N A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.
%C A081130 Rows, of the square array, are three-fold convolutions of sequences of powers.
%H A081130 G. C. Greubel, <a href="/A081130/b081130.txt">Antidiadoganal rows n = 0..50, flattened</a>
%F A081130 T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
%F A081130 T(n, n) = A081131(n).
%F A081130 Rows have g.f. x^3/(1-k*x)^n.
%F A081130 From _G. C. Greubel_, May 14 2021: (Start)
%F A081130 T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
%F A081130 Sum_{k=0..n} T(n, n-k) = A081197(n). (End)
%e A081130 The array begins as:
%e A081130   0,  0,  0,   0,   0,    0, ...
%e A081130   0,  0,  0,   0,   0,    0, ...
%e A081130   0,  1,  1,   1,   1,    1, ... A000012
%e A081130   0,  3,  6,   9,  12,   15, ... A008585
%e A081130   0,  6, 24,  54,  96,  150, ... A033581
%e A081130   0, 10, 80, 270, 640, 1250, ... A244729
%e A081130 The antidiagonal triangle begins as:
%e A081130   0;
%e A081130   0, 0;
%e A081130   0, 0, 0;
%e A081130   0, 0, 1, 0;
%e A081130   0, 0, 1, 3,  0;
%e A081130   0, 0, 1, 6,  6,  0;
%e A081130   0, 0, 1, 9, 24, 10, 0;
%t A081130 Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 14 2021 *)
%o A081130 (Magma) [k eq n select 0 else (n-k)^(k-2)*Binomial(k,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 14 2021
%o A081130 (Sage) flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 14 2021
%o A081130 (PARI)
%o A081130 T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2));
%o A081130 seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); );
%o A081130 seq(12) \\ _Michel Marcus_, May 14 2021
%Y A081130 Main diagonal: A081131.
%Y A081130 Rows: A000012 (n=2), A008585 (n=3), A033581 (n=4), A244729 (n=5).
%Y A081130 Columns: A000217 (k=1), A001788 (k=2), A027472 (k=3), A038845 (k=4), A081135 (k=5), A081136 (k=6), A027474 (k=7), A081138 (k=8), A081139 (k=9), A081140 (k=10), A081141 (k=11), A081142 (k=12), A027476 (k=15).
%K A081130 easy,nonn,tabl
%O A081130 0,14
%A A081130 _Paul Barry_, Mar 08 2003
%E A081130 Term a(5) corrected by _G. C. Greubel_, May 14 2021