This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081210 #27 Jun 09 2025 09:02:56 %S A081210 1,2,3,3,5,6,7,7,7,10,11,9,13,14,15,15,17,14,19,15,21,22,23,21,23,26, %T A081210 26,21,29,30,31,31,33,34,35,21,37,38,39,35,41,42,43,33,35,46,47,45,47, %U A081210 46,51,39,53,52,55,49,57,58,59,45,61,62,49,62,65,66,67,51,69,70,71,49,73 %N A081210 In prime factorization of n replace each prime power p^e with the greatest squarefree number <= p^e. %H A081210 Reinhard Zumkeller, <a href="/A081210/b081210.txt">Table of n, a(n) for n = 1..10000</a> %F A081210 Multiplicative with a(p^e) = A070321(p^e), p prime. %F A081210 a(n) <= n and a(n) = n iff n is squarefree (A005117). %F A081210 A081211(n) = a(a(n)), see A081212, A081213 and A081214 for iterations until a fixed point is reached. %p A081210 A081210 := proc(n) %p A081210 local a,pe; %p A081210 a :=1 ; %p A081210 for pe in ifactors(n)[2] do %p A081210 a := a*A070321(op(1,pe)^op(2,pe)) ; %p A081210 end do: %p A081210 a ; %p A081210 end proc: %p A081210 seq(A081210(n),n=1..100) ; # _R. J. Mathar_, May 25 2023 %t A081210 gsf[n_] := For[k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; a[n_] := Times @@ gsf /@ Power @@@ FactorInteger[n]; Table[a[n], {n, 1, 80}] (* _Jean-François Alcover_, Mar 27 2013 *) %o A081210 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1], my(k = f[i,1]^f[i,2]); while(!issquarefree(k), k--); k));} \\ _Amiram Eldar_, Jun 09 2025 %Y A081210 Cf. A005117, A070321, A081212, A081213, A081214. %K A081210 nonn,mult %O A081210 1,2 %A A081210 _Reinhard Zumkeller_, Mar 10 2003