cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081219 One sixtieth the product of primitive Pythagorean triangles' sides whose odd values differ by 2.

This page as a plain text file.
%I A081219 #22 Aug 02 2025 12:16:52
%S A081219 1,34,259,1092,3333,8294,17927,34952,62985,106666,171787,265420,
%T A081219 396045,573678,809999,1118480,1514513,2015538,2641171,3413332,4356373,
%U A081219 5497206,6865431,8493464,10416665,12673466,15305499,18357724,21878557,25919998
%N A081219 One sixtieth the product of primitive Pythagorean triangles' sides whose odd values differ by 2.
%C A081219 If Y and Z are 2-blocks of a (2n+1)-set X then a(n-2) is the number of 7-subsets of X intersecting both Y and Z. - _Milan Janjic_, Oct 28 2007
%H A081219 Milan Janjic, <a href="https://old.pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>
%H A081219 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A081219 a(n) = n*(16*n^4 - 1)/15.
%F A081219 G.f.: x*(x^4+28*x^3+70*x^2+28*x+1) / (x-1)^6. - _Colin Barker_, Oct 06 2014
%F A081219 E.g.f.: exp(x)*x*(15 + 240*x + 400*x^2 + 160*x^3 + 16*x^4)/15. - _Stefano Spezia_, Aug 02 2025
%t A081219 LinearRecurrence[{6,-15,20,-15,6,-1},{1,34,259,1092,3333,8294},30] (* _Harvey P. Dale_, Feb 11 2024 *)
%o A081219 (PARI) Vec(x*(x^4+28*x^3+70*x^2+28*x+1)/(x-1)^6 + O(x^100)) \\ _Colin Barker_, Oct 06 2014
%Y A081219 Cf. A081752.
%K A081219 easy,nonn
%O A081219 1,2
%A A081219 _Lekraj Beedassy_, Apr 18 2003
%E A081219 More terms from _Ray Chandler_, Oct 28 2003