cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081233 Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x.

Original entry on oeis.org

3, 2, 9, 8, 10, 649, 33, 170, 24, 9801, 1520, 73, 2049, 3482, 48, 66249, 530, 1766319049, 48842, 3480, 2281249, 80, 82, 500001, 62809633, 201, 227528, 962, 158070671986249, 1204353, 4730624, 10610, 6083073, 77563250, 25801741449
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Crossrefs

Values of y are in A081234. Equals A002350(p). Cf. A082393.

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[1]], {n, 35}] (* Robert G. Wilson v, Jul 22 2005 *)
    f[n_] := Block[{p = Prime[n]}, FindInstance[x^2 == p*y^2 + 1 && x > 0 && y > 0, {x, y}, Integers][[1, 1, 2]]]; Array[f, 40] (* Robert G. Wilson v, Nov 16 2012 *)

Extensions

a(8) - a(35) from Robert G. Wilson v, Jul 22 2005