A081233 Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x.
3, 2, 9, 8, 10, 649, 33, 170, 24, 9801, 1520, 73, 2049, 3482, 48, 66249, 530, 1766319049, 48842, 3480, 2281249, 80, 82, 500001, 62809633, 201, 227528, 962, 158070671986249, 1204353, 4730624, 10610, 6083073, 77563250, 25801741449
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[1]], {n, 35}] (* Robert G. Wilson v, Jul 22 2005 *) f[n_] := Block[{p = Prime[n]}, FindInstance[x^2 == p*y^2 + 1 && x > 0 && y > 0, {x, y}, Integers][[1, 1, 2]]]; Array[f, 40] (* Robert G. Wilson v, Nov 16 2012 *)
Extensions
a(8) - a(35) from Robert G. Wilson v, Jul 22 2005