cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081234 Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of y.

This page as a plain text file.
%I A081234 #10 Jul 19 2015 01:43:50
%S A081234 2,1,4,3,3,180,8,39,5,1820,273,12,320,531,7,9100,69,226153980,5967,
%T A081234 413,267000,9,9,53000,6377352,20,22419,93,15140424455100,113296,
%U A081234 419775,927,519712,6578829,2113761020,140634693,3726964292220,5019135,13,190060
%N A081234 Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of y.
%H A081234 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A081234 PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[2]], {n, 40}] (* _Robert G. Wilson v_, Jul 22 2005 *)
%Y A081234 Values of x are in A081233. Equals A002349(p). Cf. A082393.
%K A081234 easy,nonn
%O A081234 1,1
%A A081234 _N. J. A. Sloane_, Apr 18 2003
%E A081234 More terms (a(8) - a(40)) from _Robert G. Wilson v_, Jul 22 2005