This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081238 #19 Dec 16 2021 04:13:41 %S A081238 0,2,4,4,6,12,16,16,16,24,30,30,36,48,60,60,70,70,80,80,96,112,126, %T A081238 126,126,144,144,144,160,176,192,192,216,240,264,264,286,312,338,338, %U A081238 364,390,416,416,416,448,476,476,476,476,510,510,540,540,576,576,612,648 %N A081238 #{(i,j): mu(i)*mu(j) = -1, 1 <= i <= n, 1 <= j <= n}, where mu=A008683 (Moebius function). %H A081238 Reinhard Zumkeller, <a href="/A081238/b081238.txt">Table of n, a(n) for n = 1..500</a> %F A081238 a(n) + A081239(n) + A081240(n) = n^2; %F A081238 a(n) = a(n-1) iff mu(n) = 0. %F A081238 a(n) = 2*A070548(n)*A070549(n). - _Robert Israel_, Jan 08 2018 %e A081238 n mu(n) n: 1 2 3 4 5 6 7 8 %e A081238 - ----- +-----------------> %e A081238 1 +1 | + - - 0 - + - 0 %e A081238 2 -1 | - + + 0 + - + 0 %e A081238 3 -1 | - + + 0 + - + 0 %e A081238 4 0 | 0 0 0 0 0 0 0 0 %e A081238 5 -1 | - + + 0 + - + 0 a(8)=16, as there are %e A081238 6 +1 | + - - 0 - + - 0 16 '-1's in the 8 X 8 square %e A081238 7 -1 | - + + 0 + - + 0 (represented as '-') %e A081238 8 0 | 0 0 0 0 0 0 0 0 %p A081238 Nplus:= 0: %p A081238 Nminus:=0: %p A081238 for n from 1 to 100 do %p A081238 v:= numtheory:-mobius(n); %p A081238 if v = 1 then Nplus:= Nplus+1 %p A081238 elif v = -1 then Nminus:= Nminus+1 %p A081238 fi; %p A081238 A[n]:= 2*Nplus*Nminus; %p A081238 od: %p A081238 seq(A[n],n=1..100); # _Robert Israel_, Jan 08 2018 %t A081238 Nplus = Nminus = 0; %t A081238 For[n = 1, n <= 100, n++, v = MoebiusMu[n]; %t A081238 If[v == 1, Nplus++, %t A081238 If[v == -1, Nminus++]]; %t A081238 a[n] = 2 Nplus Nminus]; %t A081238 Array[a, 100] (* _Jean-François Alcover_, Dec 16 2021, after _Robert Israel_ *) %o A081238 (Haskell) %o A081238 a081238 n = length [() | u <- [1..n], v <- [1..n], %o A081238 a008683 u * a008683 v == -1] %o A081238 -- _Reinhard Zumkeller_, Aug 03 2012 %Y A081238 Cf. A070548, A070549, A081239, A081240. %K A081238 nonn %O A081238 1,2 %A A081238 _Reinhard Zumkeller_, Mar 11 2003