cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

This page as a plain text file.
%I A081277 #35 Jul 26 2022 16:29:41
%S A081277 1,1,1,1,3,2,1,5,8,4,1,7,18,20,8,1,9,32,56,48,16,1,11,50,120,160,112,
%T A081277 32,1,13,72,220,400,432,256,64,1,15,98,364,840,1232,1120,576,128,1,17,
%U A081277 128,560,1568,2912,3584,2816,1280,256,1,19,162,816,2688,6048,9408,9984,6912
%N A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.
%C A081277 Rows include A011782, A001792, A001793, A001794, A006974.
%C A081277 Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - _Philippe Deléham_, Aug 09 2005
%C A081277 Antidiagonal sums are in A025192. - _Philippe Deléham_, Dec 04 2006
%C A081277 Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - _Gary W. Adamson_, Jul 17 2008
%C A081277 When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays.  Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - _Clark Kimberling_, Aug 04 2011
%H A081277 Robert Davis, Greg Simay, <a href="https://arxiv.org/abs/2001.11089">Further Combinatorics and Applications of Two-Toned Tilings</a>, arXiv:2001.11089 [math.CO], 2020.
%F A081277 T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
%F A081277 T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
%F A081277 T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -_Philippe Deléham_, Aug 12 2005
%F A081277 G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - _R. J. Mathar_, Aug 11 2015
%e A081277 Rows begin
%e A081277   1, 1,  2,   4,   8, ...
%e A081277   1, 3,  8,  20,  48, ...
%e A081277   1, 5, 18,  56, 160, ...
%e A081277   1, 7, 32, 120, 400, ...
%e A081277   1, 9, 50, 220, 840, ...
%e A081277   ...
%e A081277 As a triangle:
%e A081277   1;
%e A081277   1,  1;
%e A081277   1,  3,  2;
%e A081277   1,  5,  8,  4;
%e A081277   1,  7, 18, 20,  8;
%t A081277 (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
%t A081277 z = 8; a = 1; b = 1; c = 1; d = 1;
%t A081277 p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
%t A081277 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t A081277 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t A081277 g[n_] := CoefficientList[w[n, x], {x}]
%t A081277 TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t A081277 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
%t A081277 TableForm[Table[g[n], {n, -1, z}]]
%t A081277 Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
%t A081277 Factor[w[6, x]]
%t A081277 (* _Clark Kimberling_, Aug 04 2011 *)
%Y A081277 Cf. A079628.
%Y A081277 Cf. A142978, A104698.
%Y A081277 Cf. A167580 and A167591. - _Johannes W. Meijer_, Nov 23 2009
%Y A081277 Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - _Mathias Zechmeister_, Jul 26 2022
%K A081277 easy,nonn,tabl
%O A081277 0,5
%A A081277 _Paul Barry_, Mar 16 2003